Ortegabondesen3920

Z Iurium Wiki

We propose and demonstrate a light-panel and rolling-shutter-effect (RSE) camera-based visible light communication (VLC) system using Z-score normalization, red/green/blue (RGB) color channel separation, and 1-D artificial neural network (ANN). The proposed scheme can mitigate the high inter-symbol interference (ISI) generated by the RSE pattern due to the low pixel-per-bit and high noise-ratio (NR) of the display contents.For the first time to our knowledge, the operation of a synchronously pumped ultrafast Raman laser that uses a PbMoO4 crystal as the active medium has been demonstrated. We achieved efficient Raman conversion in PbMoO4 from pumping 1063 nm into 1171 and 1217 nm, respectively, at single and combined frequency shifts on stretching and bending Raman modes. The output pulse energy (up to 160 nJ) and peak power (up to 11 kW) of the output picosecond radiation is the highest among all-solid-state synchronously pumped Raman lasers published to date. The strongest pulse shortening at 1217 nm down to 1.4 ps was obtained that is close to the bending mode dephasing time.In this paper, a multi-wavelength fiber ring laser (MWFRL) based on a hybrid gain medium and Sagnac interferometer (SI) used for temperature measurement has been proposed and experimentally demonstrated. Experiments have been carried out with polarization maintaining fibers (PMF) of different lengths, which are incorporated in the SI as sensing elements. FK866 order Stable multi-wavelength oscillation at 1560 nm band is successfully achieved with the wavelength instability of ±0.08 nm and the signal-to-noise of 42 dB. The experimental results show that the wavelength change of the MWFRL with temperature variation has a good linear response and the temperature sensitivity of 1.8063 ± 0.00933 nm/°C is obtained when the length of the PMF is 1.7 m. As the length of PMF increases, the sensitivity can be improved.Diffraction calculations play an essential role in Fourier optics and computational imaging. Conventional methods only consider the calculation from the perspective of discrete computation which would either cause error or sacrifice efficiency. In this work, we provide a unified frequency response analysis from the joint physics-mathematics perspective and propose corresponding adaptive frequency sampling strategies for five popular diffraction calculation methods. With the proposed strategies, the calculation correctness is guaranteed and the calculation efficiency is improved. Such an idea of unified frequency response study would help researchers make a do-it-yourself analysis for various diffraction calculation tasks and choose or develop a method for accurate and efficient computations of the diffraction fields.Optical diffraction tomography (ODT) is used to reconstruct refractive-index distributions from multiple measurements in the object rotating configuration (ORC) or the illumination scanning configuration (ISC). Because of its fast data acquisition and stability, ISC-based ODT has been widely used for biological imaging. ODT typically fails to reconstruct multiply-scattering samples. The previously developed iterative ODT (iODT) was for the multiply-scattering objects in ORC, and could not be directly applied to ISC. To resolve this mismatch, we developed an ISC update and numerically demonstrated its accuracy. With the same prior knowledge, iODT-ISC outperforms conventional ODT in resolving the missing-angle problem.A tunable multifunctional modulator of the stacked graphene-based hyperbolic metamaterial (HM) cells is proposed. The dielectric constant and group index of HM are theoretically investigated. The calculated results show that, for the cell structure, a transmission window in the reflection zone (TWRZ) can be obtained at the normal incidence, but all reflections are converted to the transmission when the incident angle is near 82°. Concurrently, a single frequency absorption in the transmission zone (SFATZ) is realized, which can be adjusted by the chemical potential of graphene. For the whole structure composed of cell structures with different chemical potentials, the ultra-wideband absorption and transmission window in the absorption zone (TWAZ) can be achieved, which can work in different frequency bands if the given structural parameters can be tailored. Those computed results can apply for switchable frequency-dependent and angle-dependent reflection-transmission modulations, single frequency and ultra-wideband absorbers, and a logic switch based on the TWAZ.In solar tower plants, thousands of heliostats reflect sunlight into a central receiver. Heliostats consist of a subset of mirrors called facets that must be perfectly oriented (i.e., canted) to concentrate as much solar radiation as possible. This study presents and validates the so-called flux map fitting technique to detect and correct canting errors. The computed distributions were matched to a series of images through an optimization algorithm. According to the sensitivity analysis, three images spread along a single day provide sufficient information for the algorithm to succeed. Using this methodology, four heliostats at the THEMIS research facility were recanted, thereby substantially increasing the optical quality in three of them. The procedure to infer the heliostat aimpoint was assessed.In this study, we have designed an equivalent circuit model (ECM) by use of a simple MATLAB code to analyze a single-layered graphene chiral multi-band metadevice absorber which is composed of U-shaped graphene resonator array in terahertz (THz) region. In addition, the proposed metadevice absorber is analyzed numerically by the finite element method (FEM) in CST Software to verify the ECM analysis. The proposed device which is the first tunable graphene-based chiral metadevice absorber can be used in polarization sensitive devices in THz region. It is single-layered, tunable, and it has strong linear dichroism (LD) response of 94% and absorption of 99% for both transverse electric (TE) and transverse magnetic (TM) electromagnetic waves. It has four absorption bands with absorption >50% in 0.5-4.5 THz three absorption bands for TE mode and one absorption band for TM mode. Proposed ECM has good agreement with the FEM simulation results. ECM analysis provides a simple, fast, and effective way to understand the resonance modes of the metadevice absorber and gives guidance for the analysis and design of the graphene chiral metadevices in the THz region.

Autoři článku: Ortegabondesen3920 (Duffy Risager)