Odgaardmorrow4094

Z Iurium Wiki

We report the vibrational energy levels of vinyl radical (VR) that are computed with a Lanczos eigensolver and a contracted basis. Many of the levels of the two previous VR variational calculations differ significantly and differ also from those reported in this paper. We identify the source of and correct symmetry errors on the potential energy surfaces used in the previous calculations. VR has two equivalent equilibrium structures. By plotting wavefunction cuts, we show that two tunneling paths play an important role. Using the computed wavefunctions, it is possible to assign many states and thereby to determine tunneling splittings that are compared with their experimental counterparts. Our computed red shift of the hot band at 2897.23 cm-1, observed by Dong et al. [J Chem. Phys. 128, 044305 (2008)], is 4.47 cm-1, which is close to the experimental value of 4.63 cm-1.In this work, we establish formally exact stochastic equation of motion (SEOM) theory to describe the dissipative dynamics of fermionic open systems. The construction of the SEOM is based on a stochastic decoupling of the dissipative interaction between the system and fermionic environment, and the influence of environmental fluctuations on the reduced system dynamics is characterized by stochastic Grassmann fields. Meanwhile, numerical realization of the time-dependent Grassmann fields has remained a long-standing challenge. To solve this problem, we propose a minimal auxiliary space (MAS) mapping scheme with which the stochastic Grassmann fields are represented by conventional c-number fields along with a set of pseudo-levels. This eventually leads to a numerically feasible MAS-SEOM method. The important properties of the MAS-SEOM are analyzed by making connection to the well-established time-dependent perturbation theory and the hierarchical equations of motion theory. The MAS-SEOM method provides a potentially promising approach for the accurate and efficient simulation of fermionic open systems at ultra-low temperatures.In the past few decades, prediction of macromolecular structures beyond the native conformation has been aided by the development of molecular dynamics (MD) protocols aimed at exploration of the energetic landscape of proteins. Yet, the computed structures do not always agree with experimental observables, calling for further development of the MD strategies to bring the computations and experiments closer together. Here, we report a scalable, efficient MD simulation approach that incorporates an x-ray solution scattering signal as a driving force for the conformational search of stable structural configurations outside of the native basin. We further demonstrate the importance of inclusion of the hydration layer effect for a precise description of the processes involving large changes in the solvent exposed area, such as unfolding. Utilization of the graphics processing unit allows for an efficient all-atom calculation of scattering patterns on-the-fly, even for large biomolecules, resulting in a speed-up of the calculation of the associated driving force. The utility of the methodology is demonstrated on two model protein systems, the structural transition of lysine-, arginine-, ornithine-binding protein and the folding of deca-alanine. MEK inhibitor We discuss how the present approach will aid in the interpretation of dynamical scattering experiments on protein folding and association.Molecular multibond dissociation displays a variety of electron correlation effects posing a challenge for theoretical description. We propose a CASΠ(M)DFT approach, which includes these effects in an efficient way by combining the complete active space self-consistent field method with density functional theory (DFT). Within CASΠ(M)DFT, a small complete active space (CAS) accounts for the long-range intrabond and middle-range interbond nondynamic correlation in the stretched bonds. The common short-range dynamic correlation is calculated with the Lee-Yang-Parr (LYP) correlation DFT functional corrected for the suppression of dynamic correlation with nondynamic correlation. The remaining middle-range interbond dynamic correlation is evaluated with the modified LYP functional of the bond densities. As a result, CASΠ(M)DFT potential energy curves (PECs) calculated in the relatively small triple-zeta basis closely reproduce the benchmark complete basis set PECs for the following prototype multibonded molecules N2, CO, H2O, and C2.The infrared (IR) spectrum of monobridged Si2H4 (denoted as mbr-Si2H4) isolated in solid Ar was recorded, and a set of lines (in the major matrix site) observed at 858.3 cm-1, 971.5 cm-1, 999.2 cm-1, 1572.7 cm-1, 2017.7 cm-1, 2150.4 cm-1, and 2158.4 cm-1 were characterized. The species was produced by the electron bombardment of an Ar matrix sample containing a small proportion of SiH4 during matrix deposition. Upon photolysis of the matrix samples using 365 nm and 160 nm light, the content of mbr-Si2H4 increased. The band positions, relative intensity ratios, and D-isotopic shift ratios of the observed IR features are generally in good agreement with those predicted by the B3LYP/aug-cc-pVTZ method. In addition, the photochemistry of the observed products was discussed.It was believed that Kramers-Henneberger (KH) atoms in a linearly polarized superintense laser field exhibit the structure of "dichotomy." At large quiver amplitude, the two lowest-lying eigenstates are degenerated and both have a dichotomous symmetric structure. However, this is not a common structure for KH atoms because KH atoms practically can only exist in the focused laser field. However, in a focused laser, KH state electrons usually experience the ponderomotive force, which will lift the degeneracy and break the symmetry.DIRAC is a freely distributed general-purpose program system for one-, two-, and four-component relativistic molecular calculations at the level of Hartree-Fock, Kohn-Sham (including range-separated theory), multiconfigurational self-consistent-field, multireference configuration interaction, electron propagator, and various flavors of coupled cluster theory. At the self-consistent-field level, a highly original scheme, based on quaternion algebra, is implemented for the treatment of both spatial and time reversal symmetry. DIRAC features a very general module for the calculation of molecular properties that to a large extent may be defined by the user and further analyzed through a powerful visualization module. It allows for the inclusion of environmental effects through three different classes of increasingly sophisticated embedding approaches the implicit solvation polarizable continuum model, the explicit polarizable embedding model, and the frozen density embedding model.

Autoři článku: Odgaardmorrow4094 (Dempsey Yang)