Nissenwulff9351

Z Iurium Wiki

A high-protein diet has a variety of beneficial effects and mixing isolated soybean protein (ISP) with whey protein (WP) reported to increases health and functional advantages. The objective of this study was to determine an adequate ratio for mixing these two proteins by evaluating the physical and sensory properties of protein-fortified samples. Samples with 5 different ratios of ISP to WP ranging from 1000 to 0100 were prepared. Proximate composition, density, spread factor, hardness and color values of five samples were measured and consumer acceptance test were conducted by 117 panelists to evaluate physicochemical and sensory properties of protein-fortified cookies. In a consumer acceptance test, the combination of ISP and WP increased consumer acceptance, and the highest overall acceptance was obtained when ISP and WP were used in a one to one ratio. As the ISP content increased, the density was higher, and the spreadability was the lowest. On the other hand, as WP increased, hardness increased significantly, and L*, a* and b* values increased (p  less then  0.05).The result of this study may facilitate the development of protein-enriched foods, which have various health benefits.This study explored the potential of using hybrid pump dryer (HPD) to utilize overproduction in aquaculture of oysters, especially during winter. HPD-dried oysters maybe used as amendments for kimchi, a traditional Korean side dish, for possible nutrient source and flavor enhancer. Oysters were subjected to different heating treatments and evaluated for proximate composition, quality characteristics, and antioxidant activities. Lower lipid and higher glycogen content were observed in HPD-dried oysters processed than the samples dried with hot air (HAD). HPD-dried oysters also exhibited lesser browning activity, better surface color, and higher antioxidant activities. Ash, protein, and water activity were slightly affected by heating treatment. VBN and TBARS were found to be higher in HAD-dried oysters, indicating faster spoilage. Applying heat pattern in drying resulted to improved quality characteristics and antioxidant activities and slower degradation of dried oyster products compared to their single-temperature-drying counterparts, especially those dried at high temperatures.This study was designed to evaluate the absorption promoting capacity of Maillard Reaction Products (MRPs) produced during the stir-frying process of Hordei Fructus Germinatus on catechin, ferulic acid, quercetin and kaempferol by the ex vivo rat everted gut sac model, in situ single-pass intestinal perfusion model and the whole animal model. Moreover, verapamil, EDTA and mannitol were used for determining the transport mechanism of catechin, ferulic acid, quercetin and kaempferol. The tight junction (TJ) proteins including zonula occudens-1(ZO-1) and claudin-1 were chosen to investigate the promoting mechanism of MRPs by quantitative real-time PCR (qRT-PCR) and western blot analyses. The results showed that the MRPs produced during the stir-frying process of Hordei Fructus Germinatus could improve the intestinal absorption of catechin, ferulic acid, quercetin and kaempferol. And the absorption-promoting effect of MRPs was related to chelating effect and the reduced expression of claudin-1 and ZO-1. Our results suggested that MRPs could be promising oral absorption promoters, which might be another processing mechanism of Hordei Fructus Germinatus.In this study, The metabolites, metabolic pathways, and metabolic fragmentation mode of a tyrosine kinase inhibitor- (TKI-) imatinib in rats were investigated. The samples for analysis were pretreated via solid-phase extraction, and the metabolism of imatinib in rats was studied using ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS). Eighteen imatinib metabolites were identified in rat plasma, 21 in bile, 18 in urine, and 12 in feces. Twenty-seven of the above compounds were confirmed as metabolites of imatinib and 9 of them were newly discovered for the first time. Oxidation, hydroxylation, dealkylation, and catalytic dehydrogenation are the main metabolic pathways in phase I. For phase II, the main metabolic pathways were N-acetylation, methylation, cysteine, and glucuronidation binding. The fragment ions of imatinib and its metabolites were confirmed to be produced by the cleavage of the C-N bond at the amide bond. The newly discovered metabolite of imatinib was identified by UHPLC-Q-TOF-MS/MS. The metabolic pathway of imatinib and its fragmentation pattern were summarized. These results could be helpful to study the safety of imatinib for clinical use.The proposed work is focused on the simultaneous quantification of 14 compounds in the medicinal plant Achillea millefolium based on Near-Infrared Spectroscopy (NIR). The regression model of single-compound models (SCMs) and multicompound model (MCM) were created by partial least-squares regression (PLSR). Also, these models were calibrated by gas chromatographic mass spectroscopy (GC-MS). The results showed that the averaged standard errors of prediction (SEP) for the SCMs and MCM were 0.49 and 0.62, respectively, and most of the 14 compounds were significantly correlated. TKI-258 molecular weight 43 correlations were significant at the 0.01 level (47.25% of the total), and 11 correlations were significant at the 0.05 level (12.09% of the total). The first three principal components (PCs) of principal component analysis (PCA) can explain >78% of the total variance. According to the component matrix and the communality table, octadecanoic acid has the largest influence on PC 1 (extraction squared = 46.72%), whose extraction was 0.932. The communality of neophytadiene, Z,Z,Z-9,12,15-octadecatrienoic acid, and oleic acid was also found to be large, whose extractions were 0.955, 0.937, and 0.859, respectively. These results indicate that if one compound shows a linear relationship with the NIR absorbance signal (SCM) also, an MCM can be created due to the close interrelations of these compounds. In this context, the present work highlights a suitable sample preparation technique to perform NIR analysis of raw plant material to benefit from robust and precise calibrations. To sum up, this NIR spectroscopic approach offers a precise, rapid, and cost-effective high-throughput analytical technique to simultaneously and noninvasively perform quantitative analysis of raw plant materials.

Autoři článku: Nissenwulff9351 (Tolstrup Kvist)