Mosespoe4392

Z Iurium Wiki

Liquid transport (continuous or segmented) in microfluidic platforms typically requires pumping devices or external fields working collaboratively with special fluid properties to enable fluid motion. Natural liquid adhesion on surfaces deters motion and promotes the possibility of liquid or surface contamination. Despite progress, significant advancements are needed before devices for passive liquid propulsion, without the input of external energy and unwanted contamination, become a reality in applications. Here we present an unexplored and facile approach based on the Laplace pressure imbalance, manifesting itself through targeted track texturing, driving passively droplet motion, while maintaining the limited contact of the Cassie-Baxter state on superhydrophobic surfaces. The track topography resembles out-of-plane, backgammon-board, slowly converging microridges decorated with nanotexturing. This design naturally deforms asymmetrically the menisci formed at the bottom of a droplet contacting such tracks and causes a Laplace pressure imbalance that drives droplet motion. We investigate this effect over a range of opening track angles and develop a model to explain and quantify the underlying mechanism of droplet self-propulsion. We further implement the developed topography for applications relevant to microfluidic platform functionalities. We demonstrate control of the rebound angle of vertically impacting droplets, achieve horizontal self-transport to distances up to 65 times the droplet diameter, show significant uphill motion against gravity, and illustrate a self-driven droplet-merging process.Glioblastoma (GBM) is resistant to immune checkpoint inhibition due to its low mutation rate, phosphatase and tensin homologue (PTEN)-deficient immunosuppressive microenvironment, and high fraction of cancer stem-like cells (CSCs). Nanomedicines fostering immunoactivating intratumoral signals could reverse GBM resistance to immune checkpoint inhibitors (ICIs) for promoting curative responses. Here, we applied pH-sensitive epirubicin-loaded micellar nanomedicines, which are under clinical evaluation, to synergize the efficacy of anti-PD1antibodies (aPD1) against PTEN-positive and PTEN-negative orthotopic GBM, the latter with a large subpopulation of CSCs. The combination of epirubicin-loaded micelles (Epi/m) with aPD1 overcame GBM resistance to ICIs by transforming cold GBM into hot tumors with high infiltration of antitumor immune cells through the induction of immunogenic cell death (ICD), elimination of immunosuppressive myeloid-derived suppressor cells (MSDCs), and reduction of PD-L1 expression on tumor cells. Thus, Epi/m plus aPD1 eradicated both PTEN-positive and PTEN-negative orthotopic GBM and provided long-term immune memory effects. Our results indicate the high translatable potential of Epi/m plus aPD1 for the treatment of GBM.Owing to their large surface area, continuous conduction paths, high activity, and pronounced anisotropy, nanowires are pivotal for a wide range of applications, yet far from thermodynamic equilibrium. Their susceptibility toward degradation necessitates an in-depth understanding of the underlying failure mechanisms to ensure reliable performance under operating conditions. In this study, we present an in-depth analysis of the thermally triggered Plateau-Rayleigh-like morphological instabilities of electrodeposited, polycrystalline, 20-40 nm thin platinum nanowires using in situ transmission electron microscopy in a controlled temperature regime, ranging from 25 to 1100 °C. Nanowire disintegration is heavily governed by defects, while the initially present, frequent but small thickness variations do not play an important role and are overridden later during reshaping. Changes of the exterior wire morphology are preceded by shifts in the internal nanostructure, including grain boundary straightening, grain growth, and the formation of faceted voids. Surprisingly, the nanowires segregate into two domain types, one being single-crystalline and essentially void-free, while the other preserves void-pinned grain boundaries. While the single-crystalline domains exhibit fast Pt transport, the void-containing domains are unexpectedly stable, accumulate platinum by surface diffusion, and act as nuclei for the subsequent nanowire splitting. This study highlights the vital role of defects in Plateau-Rayleigh-like thermal transformations, whose evolution not only accompanies but guides the wire reshaping. Thus, defects represent strong parameters for controlling the nanowire decay and must be considered for devising accurate models and simulations.The recent discovery of van der Waals magnetic materials has attracted great attention in materials science and spintronics. The preparation of ultrathin magnetic layers down to atomic thickness is challenging and is mostly by mechanical exfoliation. Here, we report vapor deposition of magnetic van der Waals NiI2 crystals. Two-dimensional (2D) NiI2 flakes are grown on SiO2/Si substrates with a thickness of 5-40 nm and on hexagonal boron nitride (h-BN) down to monolayer thickness. Temperature-dependent Raman spectroscopy reveals robust magnetic phase transitions in the as-grown 2D NiI2 crystals down to trilayer. Electrical measurements show a semiconducting transport behavior with a high on/off ratio of 106 for the NiI2 flakes. Lastly, density functional theory calculation shows an intralayer ferromagnetic and interlayer antiferromagnetic ordering in 2D NiI2. This work provides a feasible approach to epitaxy 2D magnetic transition metal halides and also offers atomically thin materials for spintronic devices.The growing family of 2D materials led not long ago to combining different 2D layers and building artificial systems in the form of van der Waals heterostructures. Tailoring of heterostructure properties postgrowth would greatly benefit from a modification technique with a monolayer precision. However, appropriate techniques for material modification with this precision are still missing. To achieve such control, slow highly charged ions appear ideal as they carry high amounts of potential energy, which is released rapidly upon ion neutralization at the position of the ion. The resulting potential energy deposition is thus limited to just a few atomic layers (in contrast to the kinetic energy deposition). Here, we irradiated a freestanding van der Waals MoS2/graphene heterostructure with 1.3 keV/amu xenon ions in high charge states of 38, which led to nanometer-sized pores that appear only in the MoS2 facing the ion beam, but not in graphene beneath the hole. Reversing the stacking order leaves both layers undamaged, which we attribute to the high conductivity and carrier mobility in graphene acting as a shield for the MoS2 underneath. Our main focus is here on monolayer MoS2, but we also analyzed areas with few-layer structures and observed that the perforation is limited to the two topmost MoS2 layers, whereas deeper layers remain intact. Our results demonstrate that in addition to already being a valuable tool for materials processing, the usability of ion irradiation can be extended to mono- (or bi)layer manipulation of van der Waals heterostructures when the localized potential energy deposition of highly charged ions is also added to the toolbox.Refractory metals and their carbides possess extraordinary chemical and temperature resilience and exceptional mechanical strength. Yet, they are notoriously difficult to employ in additive manufacturing, due to the high temperatures needed for processing. State of the art approaches to manufacture these materials generally require either a high-energy laser or electron beam as well as ventilation to protect the metal powder from combustion. Here, we present a versatile manufacturing process that utilizes tar as both a light absorber and antioxidant binder to sinter thin films of aluminum, copper, nickel, molybdenum, and tungsten powder using a low power ( less then 2W) CO2 laser in air. Films of sintered Al/Cu/Ni metals have sheet resistances of ∼10-1 ohm/sq, while laser-sintered Mo/W-tar thin films form carbide phases. Several devices are demonstrated, including laser-sintered porous copper with a stable response to large strain (3.0) after 150 cycles, and a laserprocessed Mo/MoC(1-x) filament that reaches T ∼1000 °C in open air at 12 V. These results show that tar-mediated laser sintering represents a possible low energy, cost-effective route for engineering refractory materials and one that can easily be extended to additive manufacturing processes.Surface ligands impact the properties and chemistry of nanocrystals, but observing ligand binding locations and their effect on nanocrystal shape transformations is challenging. selleck compound Using graphene liquid cell electron microscopy and the controllable, oxidative etching of gold nanocrystals, the effect of different ligands on nanocrystal etching can be tracked with nanometer spatial resolution. The chemical environment of liquids irradiated with high-energy electrons is complex and potentially harsh, yet it is possible to observe clear evidence for differential binding properties of specific ligands to the nanorods' surface. Exchanging CTAB ligands for PEG-alkanethiol ligands causes the nanorods to etch at a different, constant rate while still maintaining their aspect ratio. Adding cysteine ligands that bind preferentially to nanorod tips induces etching predominantly on the sides of the rods. This etching at the sides leads to Rayleigh instabilities and eventually breaks apart the nanorod into two separate nanoparticles. The shape transformation is controlled by the interplay between atom removal and diffusion of surface atoms and ligands. These in situ observations are confirmed with ex situ colloidal etching reactions of gold nanorods in solution. The ability to monitor the effect of ligands on nanocrystal shape transformations will enable future in situ studies of nanocrystals surfaces and ligand binding positions.The simultaneous occurrence of multiple heterogeneous DNA phosphorylation statuses, which include 5' end phosphorylation, 5' end dephosphorylation, 3' end phosphorylation, and 3' end dephosphorylation, is crucial for regulating numerous cellular processes. Although there are many methods for detecting a single type of DNA phosphorylation, the direct and simultaneous identification of DNA phosphorylation/dephosphorylation on the 5' and/or 3' ends remains a challenge, let alone the unveiling of the heterogeneous catalysis processes of related phosphatases and kinases. Taking advantage of the charge-sensitive aerolysin nanopore interface, herein, an orientation-dependent sensing strategy is developed to enhance phosphorylation-site-dependent interaction with the nanopore sensing interface, enabling the direct and simultaneous electric identification of four heterogeneous phosphorylation statuses of a single DNA. By using this strategy, we can directly evaluate the heterogeneous dephosphorylation process of alkaline phosphatase (ALP) at the single-molecule level. Our results demonstrate that the ALP in fetal bovine serum preferentially catalyzes the 3' phosphate rather than both ends. The quantification of endogenous ALP activity in fetal bovine serum could reach the submilli-IU/L level. Our aerolysin measurements provide a direct look at the heterogeneous phosphorylation status of DNA, allowing the unveiling of the dynamic single-molecule functions of kinase and phosphatase.

Autoři článku: Mosespoe4392 (Snedker Huynh)