Morrowbagge5710

Z Iurium Wiki

Secondary injury is a potentially modifiable factor of outcome in traumatic brain injury. This study aimed to investigate thymoquinone's effects on trauma-induced neuronal damage.

Eighteen adult female Sprague-Dawley rats were assigned into three groups following ketamine and xylazine anaesthesia (

 = 6) Control, Trauma, Trauma + Thymoquinone. First dose of thymoquinone was administered three hours after the trauma.

The trauma group showed significant oedema, vascular congestion, and ischaemia. Also, caspase-3 activity and malondialdehyde content of brain tissue was significantly increased, and Na,K-ATPase activity and glutathione levels were significantly reduced. Thymoquinone significantly reduced oedema, vascular congestion, ischaemia, and caspase-3 activity compared with the trauma group. While Na,K-ATPase activity and glutathione levels was similar to the Control group, malondialdehyde content was similar to the trauma group.

This study showed that low dose thymoquinone exhibited a neuroprotective effect following severe traumatic brain injury, if administered within three hours of injury. Similar levels of glutathione and malondialdehyde suggest no antioxidant effect. Significant reduction in oedema and ischaemia in the neuron cells and partially preserved activity of Na,K-ATPase suggest that thymoquinone protects mitochondrial functions and energy levels of the neuronal cells following severe traumatic brain injury.

This study showed that low dose thymoquinone exhibited a neuroprotective effect following severe traumatic brain injury, if administered within three hours of injury. Similar levels of glutathione and malondialdehyde suggest no antioxidant effect. Significant reduction in oedema and ischaemia in the neuron cells and partially preserved activity of Na,K-ATPase suggest that thymoquinone protects mitochondrial functions and energy levels of the neuronal cells following severe traumatic brain injury.In cattle, starting 4-5 days after estrus, preimplantation embryonic development occurs in the confinement of the uterine lumen. Cells in the endometrial epithelial layer control the molecular traffic to and from the lumen and, thereby determine luminal composition. Starting early postestrus, endometrial function is regulated by sex steroids, but the effects of progesterone on luminal cells transcription have not been measured in vivo. The first objective was to determine the extent to which progesterone controls transcription in luminal epithelial cells 4 days (D4) after estrus. The second objective was to discover luminal transcripts that predict pregnancy outcomes when the effect of progesterone is controlled. Endometrial luminal epithelial cells were collected from embryo transfer recipients on D4 using a cytological brush and their transcriptome was determined by RNASeq. Pregnancy by embryo transfer was measured on D30 (25 pregnant and 18 nonpregnant). Progesterone concentration on D4 was associated positively (n = 182) and negatively (n = 58) with gene expression. Progesterone-modulated transcription indicated an increase in oxidative phosphorylation, biosynthetic activity, and proliferation of epithelial cells. When these effects of progesterone were controlled, different genes affected positively (n = 22) and negatively (n = 292) odds of pregnancy. These set of genes indicated that a receptive uterine environment was characterized by the inhibition of phosphoinositide signaling and innate immune system responses. A panel of 25 genes predicted the pregnancy outcome with sensitivity and specificity ranging from 64%-96% and 44%-83%, respectively. In conclusion, in the early diestrus, both progesterone-dependent and progesterone-independent mechanisms regulate luminal epithelial transcription associated with pregnancy outcomes in cattle.Benzene hydroxylation catalyzed by ruthenium-substituted Keggin-type polyoxometalates [RuV(O)XW11O39]n- (RuVOX; X = Al, Ga, Si, Ge, P, As, S; heteroatoms; 3 ≤ n ≤ 6) is investigated using the density functional theory approach. As a possible side reaction, the water oxidation reaction is also considered. We found that the rate-determining step for water oxidation by RuVOX requires a higher activation free energy than the benzene hydroxylation reaction, suggesting that all of the RuVOX catalysts show high chemoselectivity toward benzene hydroxylation. Additionally, the heteroatom effect in benzene hydroxylation by RuVOX is discussed. The replacement of Si by X induces changes in the bond length of μ4O-X, resulting in a change in the activation free energy for benzene hydroxylation by RuVOX. Consequentially, RuVOS is expected to be the most effective catalyst among the (RuVOX) catalysts for the benzene hydroxylation reaction.Localized release of nucleic acid therapeutics is essential for many biomedical applications, including gene therapy, tissue engineering, and medical implant coatings. We applied the substrate-mediated transfection and layer-by-layer (LbL) technique to achieve an efficient local gene delivery. In the experiments presented herein, we embeded lipoplexes containing plasmid DNA encoding for enhanced green fluorescent protein (pEGFP) within polyelectrolyte alginate-based microgels composed of poly(allylamine hydrochloride) (PAH), chondroitin sulfate (CS), and poly-l-lysine (PLL) with diameters between 70 and 90 μm. Droplet-based microfluidics was used as the main process to produce the alginate (ALG)-based microgels with discrete size, shape, and low coefficient of variation. The physicochemical and morphological properties of the polyelectrolyte microgels were characterized via optical microscopy, scanning electron microscopy (SEM), and zeta potential analysis. We found that polyelectrolyte microgels provide low cytotoxicity and cell-material interactions (adhesion, spreading, and proliferation). In addition, the microsystem showed the ability to load lipoplexes and a loading efficiency equal to 83%, and it enabled in vitro surface-based transfection of MCF-7 cells. This approach provides a new suitable route for cell adhesion and local gene delivery.Polymer dielectrics can be cost-effective alternatives to conventional inorganic dielectric materials, but their practical application is critically hindered by their breakdown under high electric fields driven by excited hot charge carriers. Using a joint experiment-simulation approach, we show that a 2D nanocoating of hexagonal boron nitride (hBN) mitigates the damage done by hot carriers, thereby increasing the breakdown strength. Surface potential decay and dielectric breakdown measurements of hBN-coated Kapton show the carrier-trapping effect in the hBN nanocoating, which leads to an increased breakdown strength. Nonadiabatic quantum molecular dynamics simulations demonstrate that hBN layers at the polymer-electrode interfaces can trap hot carriers, elucidating the observed increase in the breakdown field. The trapping of hot carriers is due to a deep potential well formed in the hBN layers at the polymer-electrode interface. selleck Searching for materials with similar deep well potential profiles could lead to a computationally efficient way to design good polymer coatings that can mitigate breakdown.Various analog applications, such as phase switching, have been demonstrated using either ambipolar or anti-ambipolar transport in two-dimensional materials. However, the availability of only one transport mode severely limits the application scope and range. This work demonstrates electrostatically reconfigurable and tunable ambipolar and anti-ambipolar transport in the same field-effect transistor using a photoactive ambipolar WSe2 channel with gate-controlled channel and Schottky barriers. This enables the realization of in-phase, out-of-phase, and double-frequency sinusoidal output signals under dark and illumination conditions. The output waveforms were used to generate phase-, frequency-, and amplitude-modulated analog schemes for 2- and 3-bit data transmission. Evaluation of all possible schemes for their power consumption, error probability, and implementation complexity highlights the importance of switching between ambipolar and anti-ambipolar modes of transport for best transmission performance. A dual-metal contact transistor with improved linearity for harmonic and excess power suppression demonstrates further performance enhancement. Generic device architecture and operation makes this work adaptable to any ambipolar material amenable to electrostatic control.Electrochemical CO2 reduction (ECR) technology is promising to produce value-added chemicals and alleviate the climate deterioration. Interface engineering is demonstrated to improve the ECR performance for metal and oxide composite catalysts. However, the approach to form a substantial interface is still limited. In this work, we report a facile one-pot coprecipitation method to synthetize novel silver and silver-doped ceria (Ag/CeO2) nanocomposites. This catalyst provides a rich 3D interface and high Ce3+ concentration (33.6%), both of which are beneficial for ECR to CO. As a result, Ag/CeO2 exhibits a 99% faradaic efficiency and 10.5 A g-1 mass activity to convert CO2 into CO at an overpotential of 0.83 V. The strong interfacial interaction between Ag and CeO2 may enable the presence of surface Ce3+ and guarantee the improved durability during the electrolysis. We also develop numerical simulation to understand the local pH effect on the ECR performance and propose that the superior ECR performance of Ag/CeO2 is mainly due to the accelerated CO formation rate rather than the suppressed hydrogen evolution reaction.

To compare the immunohistochemical expression of IL-6 in placental membranes of late preterm delivery in women with histologically proven chorioamnionitis withand without preterm premature rupture of membranes (PPROM).

Fetal membranes were collected from 60 women who had late preterm delivery with histologic chorioamnionitis with and without PPROM (30 in each group). Immunohistochemistry for IL-6 was performed on formalin fixed and paraffin-embedded sections. The two groups were matched for age, body mass index and parity. SPSS Version 17.0 was used for statistical analysis.

There was no difference in immunohistochemical expression of IL-6 in placental membranes of women with histologic chorioamnionitis regardless of the membrane status.

Chorioamnionitis has no impact on immunohistochemical expression of IL-6 in placental membranes of women with late preterm delivery despite the clinical presentation.

Chorioamnionitis has no impact on immunohistochemical expression of IL-6 in placental membranes of women with late preterm delivery despite the clinical presentation.Objective To determine the etiologies of epilepsy in a cohort of patients using the International League Against Epilepsy 2017 classification system and to determine frequencies of preventable causes and their clinical characteristics.Methods Epileptic patients in neurology clinics at a tertiary care hospital were prospectively recruited from June 1, 2018, to November 30, 2018. Patients were divided according to their respective etiologic categories. Traumatic brain injury, stroke, hypoxic-ischemic encephalopathy, and central nervous system infections were considered preventable etiologies.Results A total of 160 patients were included in the study. Of these patients, 61 had epilepsy of unknown etiology, while among the remaining 99 patients in whom etiology could be identified, traumatic brain injury was the most frequent overall cause with 17 (17.2%) cases. Frequencies in other etiologies were genetic (idiopathic generalized epilepsy) n = 14, stroke n = 13, hypoxic-ischemic encephalopathy n = 13, cerebral tumors n = 10, mesial temporal sclerosis n = 9, cortical malformation n = 7, and other structural pathologies n = 5.

Autoři článku: Morrowbagge5710 (Crowell Hsu)