Morenovest2030

Z Iurium Wiki

30 N·cm) and the other systems, except for the Premium Taper Gold (1.05 N·cm) and Go-Taper Flex (1.10 N·cm). Significantly lower bending loads than PTG (269.2 gf) were observed for the EdgeTaper Platinum (158.3 gf) and Premium Taper Gold (103.5 gf) instruments. Super Files Blue outperformed PTG in the cyclic fatigue test, while EdgeTaper Platinum and Premium Taper Gold were more flexible. Premium Taper Gold and Go-Taper Flex showed lower torsional strength.Magnesium alloys are attractive for the production of lightweight parts in modern automobile and aerospace industries due to their advanced properties. Their mechanical properties are usually enhanced by the incorporation with reinforcement particles. In the current study, reinforced AZ31 magnesium alloy was fabricated through the addition of bulk Al and the incorporation of SiC nanoparticles using a stir casting process to obtain AZ31-SiC nanocomposites. Scanning electron microscope (SEM) investigations revealed the formation of Mg17Al12 lamellar intermetallic structures and SiC clusters in the nanocomposites. Energy dispersive spectroscopy (EDS) detected the uniform distribution of SiC nanoparticles in the AZ31-SiC nanocomposites. Enhancements in hardness and yield strength (YS) were detected in the fabricated nanocomposites. This behavior was referred to a joint strengthening mechanisms which showed matrix-reinforcement coefficient of thermal expansion (CTE) and elastic modulus mismatches, Orowan strengthening, and load transfer mechanism. The mechanical properties and wear resistance were gradually increased with an increase in SiC content in the nanocomposite. The maximum values were obtained from nanocomposites containing 1 wt% of SiC (AZ31-1SiC). AZ31-1SiC nanocomposite YS and hardness were improved by 27% and 30%, respectively, compared to AZ31 alloy. This nanocomposite also exhibited the highest wear resistance; its wear mass loss and depth of the worn surface decreased by 26% and 15%, respectively, compared to AZ31 alloy.In this paper, four near-net shaped foams were produced via direct foaming, starting from a benchmark metakaolin-based geopolymer formulation. Hydrogen peroxide and metallic silicon were used in different amounts as blowing agents to change the porosity from meso- to ultra-macro-porosity. Foams were characterized by bulk densities ranging from 0.34 to 0.66 g cm-3, total porosity from 70% to 84%, accessible porosity from 41% to 52% and specific surface area from 47 to 94 m2 g-1. Gas permeability tests were performed, showing a correlation between the pore features and the processing methods applied. The permeability coefficients k1 (Darcian) and k2 (non-Darcian), calculated applying Forchheimer's equation, were higher by a few orders of magnitude for the foams made using H2O2 than those made with metallic silicon, highlighting the differing flow resistance according to the interconnected porosity. The gas permeability data indicated that the different geopolymer foams, obtained via direct foaming, performed similarly to other porous materials such as granular beds, fibrous filters and gel-cast foams, indicating the possibility of their use in a broad spectrum of applications.The influence of the nanocrystalline structure produced by severe plastic deformation (SPD) on the corrosion behavior of CoCrFeMnNi alloys with Cr contents ranging from 0 to 20 at.% was investigated in aqueous 0.5 M H2SO4 and 3.5% NaCl solutions. The resistance to general corrosion and pitting became higher in both the solutions, with higher passivation capability observed with increasing Cr content, and it is believed that the high corrosion resistance of CoCrFeMnNi alloys can be attributed to the incorporation of the Cr element. However, the impact of the nanocrystalline structure produced by SPD on the corrosion behavior was negligibly small. This is inconsistent with reports on nanocrystalline binary Fe-Cr alloys and stainless steels processed by SPD, where grain refinement by SPD results in higher corrosion resistance. The small change in the corrosion behavior with respect to grain refinement is discussed, based on the passivation process of Fe-Cr alloys and on the influence of the core effects of HEAs on the passivation process.The kinetics of nanocrystalline α-iron nitriding to γ'-iron nitride in an ammonia atmosphere was studied at 598-648 K and at atmospheric pressure. Oscillatory changes in nitriding reaction rates depending on nitrogen concentration in a solid sample were observed. This phenomenon was explained by a gradual change in the iron active surface coverage degree, with nitrogen resulting from a gradual change in the free enthalpy of nitrogen segregation. The α-Fe(N) nanocrystallites' transformation into γ'-Fe4N went through six metastable FeNx states. The continuous function proposed by Fowler and Guggenheim was modified to a stepwise variable function.In the modern construction industry, lightweight aggregate concrete (LWAC) is often used to produce load-bearing structural members. LWAC can be up to 40% lighter by volume than normal strength concrete. However, the lack of adequate numerical models often limits the practical application of innovative building materials such as lightweight concrete in real projects. The present study conducted a comparative numerical deformation analysis of a full-scale bridge deck slab and girder. Lorlatinib Using the physical model proposed by the authors and the finite element software ATENA, the deformations of full-scale lightweight and traditional reinforced concrete elements under the short-term effects of permanent and variable loads were compared. Depending on the safety and serviceability limit requirements, it was found that the amount of longitudinal reinforcement in lightweight reinforced concrete elements could be reduced compared with that in standard reinforced concrete elements with the same parameters. The results of the numerical analysis showed that the deformation analysis model proposed by the authors could serve as an alternative tool for the design of lightweight concrete flexural members with the selection of optimum geometric and reinforcement parameters limited by the stiffness condition.Liquid-vapor molecular dynamics (LVMD) simulations are performed to reinvestigate the phase transition and solvation force oscillation behavior of a simple argon liquid film confined between two solid surfaces. Our simulations present a novel scenario in which the n → n - 1 layering transitions are accompanied by the formation, climb, and annihilation of Frank partial dislocations during the squeeze-out process under compression. This is indicated by the splitting of the repulsive peaks in the solvation force profile. The detailed analysis reveals that the formation-climb-annihilation mechanism of Frank dislocation occurs during approach and disappears during receding, which would result in force hysteresis. In combination with our recent works, this study provides new insights into the physical property of nanoconfined lubricant films in boundary lubrication.The application of periodontal tissue in regenerative medicine has gained increasing interest since it has a high potential to induce hard-tissue regeneration, and is easy to handle and graft to other areas of the oral cavity or tissues. Additionally, bone morphogenetic protein-2 (BMP-2) has a high potential to induce the differentiation of mesenchymal stem cells into osteogenic cells. We previously developed a system for a gene transfer to the periodontal tissues in animal models. In this study, we aimed to reveal the potential and efficiency of periodontal tissue as a biomaterial for hard-tissue regeneration following a bmp-2 gene transfer. A non-viral expression vector carrying bmp-2 was injected into the palate of the periodontal tissues of Wistar rats, followed by electroporation. The periodontal tissues were analyzed through bone morphometric analyses, including mineral apposition rate (MAR) determination and collagen micro-arrangement, which is a bone quality parameter, before and after a gene transfer. The MAR was significantly higher 3-6 d after the gene transfer than that before the gene transfer. Collagen orientation was normally maintained even after the bmp-2 gene transfer, suggesting that the bmp-2 gene transfer has no adverse effects on bone quality. Our results suggest that periodontal tissue electroporated with bmp-2 could be a novel biomaterial candidate for hard-tissue regeneration therapy.Objectives This study evaluated the cellular response of primary osteoblasts exposed to two different presentations of a low-temperature non-sintered deproteinized bovine bone matrix (DBBM). Materials and methods Six different baths of a commercially available DBBM block (Bonefill® Porous Block) and one of DBBM granule (Bonefill® Porous) were evaluated to identify the mineral structure and organic or cellular remnants. Samples of the same baths were processed in TRIZOL for RNA extraction and quantification. For the immunologic cell reaction assay, primary human osteoblasts (pOB) were exposed to DBMM block (pOB + B) or granules (pOB + G), or none (control) for 1, 3, or 7 days of cell cultivation. Expression of proinflammatory cytokines by pOB was evaluated by crosslinked ELISA assay. In addition, total DNA amount, as well as cell viability via LDH evaluation, was assessed. Results Organic remnants were present in DBBM blocks; 45.55% (±7.12) of osteocytes lacunae presented cellular remnants in blocks compared tf organic remnants in bone substitute materials on the regeneration process.This study aims to characterize the correlations between electric characteristics and selected structural features of newly designed Al/Cu laminated conductors manufactured via room temperature rotary swaging. After swaging, the laminates with diameters of 15 mm were subjected to two different post-process annealing treatments. Structure analyses performed to evaluate the effects of thermomechanical processing were performed via scanning and transmission electron microscopies. Electric conductivity and resistivity of the laminates were experimentally measured and numerically simulated using models designed according to the real conditions. The results showed that the electric resistivity was affected by the grain size, bimodal grains' distribution (where observed), the presence of twins, and, last but not least, dislocation density. Among the influencing factors were the area fractions of Al and Cu at the cross-sections of the of the laminated conductors, too. The results revealed that fabrication of the laminate via the technology of rotary swaging introduced more advantageous combinations of electric and mechanical properties than fabrication by conventional manufacturing techniques. The lowest specific electric resistivity of 20.6 Ωm × 10-9 was measured for the laminated conductor subjected to the post-process annealing treatment at 350 °C, which imparted significant structure restoration (confirmed by the presence of fine, equiaxed, randomly oriented grains).Limitations in natural aggregate resources and the continuous increase in the demand for concrete as a building material, as well as the increase in the production of waste and the problem with its storage were the reasons for attempts to replace the sand fraction in cement matrices with a corresponding slag fraction. Municipal solid waste incineration (MSWI) slag, which is a product of waste incineration, can be used as an aggregate. This extends its service life and reduces landfill waste. Therefore, three types of cement mortars with different aggregate composition were prepared. In addition, to increase the durability of the cement matrix and the degree of immobilization of harmful heavy metals and salts present in the slag, a natural zeolite with pozzolanic properties was used. A set of tests was carried out on fresh mortar and hardened mortar, including strength tests after 7, 28 and 360 days. What is more, chemical tests were undertaken, including the content of chlorides and sulfates, leaching using the TCLP method and oxide composition.

Autoři článku: Morenovest2030 (Albrechtsen Baird)