Moonkamper2672

Z Iurium Wiki

Bubbles may nucleate below the water table because waters depressurize as they flow from ridge to valley and because pores have dilated as the deep rock has been exhumed by erosion. Many of these observations are likely to also describe the weathering and flow path patterns in other headwater landscapes. Such combined geophysical and geochemical observations will help constrain models predicting flow, storage, and reaction of groundwater in bedrock systems.Understanding the genetics of susceptibility to infectious agents is of great importance to our ability to combat disease. Here, we show that voltage-gated calcium channels (VGCCs) are critical for cellular binding and entry of the New World arenaviruses Junín and Tacaribe virus, suggesting that zoonosis via these receptors could occur. Moreover, we demonstrate that α1s haploinsufficiency renders cells and mice more resistant to infection by these viruses. In addition to being more resistant to infection, haploinsufficient cells and mice required a lower dosage of VGCC antagonists to block infection. These studies underscore the importance of genetic variation in susceptibility to both viruses and pharmaceutics.Scaling current cereal production to a growing global population will be a challenge. Wheat supplies approximately one-fifth of the calories and protein for human diets. Vertical farming is a possible promising option for increasing future wheat production. Here we show that wheat grown on a single hectare of land in a 10-layer indoor vertical facility could produce from 700 ± 40 t/ha (measured) to a maximum of 1,940 ± 230 t/ha (estimated) of grain annually under optimized temperature, intensive artificial light, high CO2 levels, and a maximum attainable harvest index. Such yields would be 220 to 600 times the current world average annual wheat yield of 3.2 t/ha. Independent of climate, season, and region, indoor wheat farming could be environmentally superior, as less land area is needed along with reuse of most water, minimal use of pesticides and herbicides, and no nutrient losses. Although it is unlikely that indoor wheat farming will be economically competitive with current market prices in the near future, it could play an essential role in hedging against future climate or other unexpected disruptions to the food system. Nevertheless, maximum production potential remains to be confirmed experimentally, and further technological innovations are needed to reduce capital and energy costs in such facilities.The ventromedial hypothalamus (VMH) plays chief roles regulating energy and glucose homeostasis and is sexually dimorphic. We discovered that expression of metabotropic glutamate receptor subtype 5 (mGluR5) in the VMH is regulated by caloric status in normal mice and reduced in brain-derived neurotrophic factor (BDNF) mutants, which are severely obese and have diminished glucose balance control. These findings led us to investigate whether mGluR5 might act downstream of BDNF to critically regulate VMH neuronal activity and metabolic function. We found that mGluR5 depletion in VMH SF1 neurons did not affect energy balance regulation. However, it significantly impaired insulin sensitivity, glycemic control, lipid metabolism, and sympathetic output in females but not in males. These sex-specific deficits are linked to reductions in intrinsic excitability and firing rate of SF1 neurons. Abnormal excitatory and inhibitory synapse assembly and elevated expression of the GABAergic synthetic enzyme GAD67 also cooperate to decrease and potentiate the synaptic excitatory and inhibitory tone onto mutant SF1 neurons, respectively. Notably, these alterations arise from disrupted functional interactions of mGluR5 with estrogen receptors that switch the normally positive effects of estrogen on SF1 neuronal activity and glucose balance control to paradoxical and detrimental. The collective data inform an essential central mechanism regulating metabolic function in females and underlying the protective effects of estrogen against metabolic disease.This research presents a nudge-based approach to promoting honest behavior. Specifically, we introduce the moral barrier hypothesis, which posits that moral violations can be inhibited by the introduction of spatial boundaries, including ones that do not physically impede the act of transgressing. We found that, as compared to a no barrier condition, children cheated significantly less often when a barrier was strategically placed to divide the space where children were seated from a place that was associated with cheating. This effect was seen both when the barrier took a physical form and when it was purely symbolic. However, the mere presence of a barrier did not reduce cheating if it failed to separate children from a space that was associated with cheating, children cheated as much as when there was no barrier at all. Taken together, these findings support the moral barrier hypothesis and show that even seemingly unremarkable features of children's environments can nudge them to act honestly.Parkinson's disease is associated with α-synuclein (α-syn), a cytosolic protein enriched in presynaptic terminals. The biological function of α-syn remains elusive; however, increasing evidence suggests that the protein is involved in the regulation of synaptic vesicle fusion, signifying the importance of α-syn-lipid interactions. We show that α-syn preferentially binds to GM1-rich, liquid-ordered lipid domains on cytoplasmic membranes by using unroofed cells, which encapsulates lipid complexity and cellular topology. Moreover, proteins (Rab3a, syntaxin-1A, and VAMP2) involved in exocytosis also localize with α-syn, supporting its proposed functional role in exocytosis. To investigate how these lipid/protein interactions influence α-syn at the residue level, α-syn was derivatized with an environmentally sensitive fluorophore (7-nitrobenz-2-oxa-1,3-diazol-4-yl [NBD]) at different N- and C-terminal sites. Measurements of NBD fluorescence lifetime distributions reveal that α-syn adopts a multitude of membrane-bound conformations, which were not recapitulated in simple micelle or vesicle models, indicating an exquisite sensitivity of the protein to the complex lipid environment. Interestingly, these data also suggest the participation of the C terminus in membrane localization, which is generally overlooked and thus emphasize the need to use cellularly derived and biologically relevant membranes for biophysical characterization. Collectively, our results demonstrate that α-syn is more conformationally dynamic at the membrane interface than previously appreciated, which may be important for both its physiological and pathological functions.Multicellular eukaryotic genomes show enormous differences in size. A substantial part of this variation is due to the presence of transposable elements (TEs). They contribute significantly to a cell's mass of DNA and have the potential to become involved in host gene control. We argue that the suppression of their activities by methylation of the C-phosphate-G (CpG) dinucleotide in DNA is essential for their long-term accommodation in the host genome and, therefore, to its expansion. An inevitable consequence of cytosine methylation is an increase in C-to-T transition mutations via deamination, which causes CpG loss. Cytosine deamination is often needed for TEs to take on regulatory functions in the host genome. Our study of the whole-genome sequences of 53 organisms showed a positive correlation between the size of a genome and the percentage of TEs it contains, as well as a negative correlation between size and the CpG observed/expected (O/E) ratio in both TEs and the host DNA. TEs are seldom found at promoters and transcription start sites, but they are found more at enhancers, particularly after they have accumulated C-to-T and other mutations. Therefore, the methylation of TE DNA allows for genome expansion and also leads to new opportunities for gene control by TE-based regulatory sites.The change in planetary albedo due to aerosol-cloud interactions during the industrial era is the leading source of uncertainty in inferring Earth's climate sensitivity to increased greenhouse gases from the historical record. Adavosertib The variable that controls aerosol-cloud interactions in warm clouds is droplet number concentration. Global climate models demonstrate that the present-day hemispheric contrast in cloud droplet number concentration between the pristine Southern Hemisphere and the polluted Northern Hemisphere oceans can be used as a proxy for anthropogenically driven change in cloud droplet number concentration. Remotely sensed estimates constrain this change in droplet number concentration to be between 8 cm-3 and 24 cm-3 By extension, the radiative forcing since 1850 from aerosol-cloud interactions is constrained to be -1.2 W⋅m-2 to -0.6 W⋅m-2 The robustness of this constraint depends upon the assumption that pristine Southern Ocean droplet number concentration is a suitable proxy for preindustrial concentrations. Droplet number concentrations calculated from satellite data over the Southern Ocean are high in austral summer. Near Antarctica, they reach values typical of Northern Hemisphere polluted outflows. These concentrations are found to agree with several in situ datasets. In contrast, climate models show systematic underpredictions of cloud droplet number concentration across the Southern Ocean. Near Antarctica, where precipitation sinks of aerosol are small, the underestimation by climate models is particularly large. This motivates the need for detailed process studies of aerosol production and aerosol-cloud interactions in pristine environments. The hemispheric difference in satellite estimated cloud droplet number concentration implies preindustrial aerosol concentrations were higher than estimated by most models.Spiral artery remodeling is an important physiological process in the pregnant uterus which increases blood flow to the fetus. Impaired spiral artery remodeling contributes to preeclampsia, a major disease in pregnancy. Corin, a transmembrane serine protease, is up-regulated in the pregnant uterus to promote spiral artery remodeling. To date, the mechanism underlying uterine corin up-regulation remains unknown. Here we show that Krüppel-like factor (KLF) 17 is a key transcription factor for uterine corin expression in pregnancy. In cultured human uterine endometrial cells, KLF17 binds to the CORIN promoter and enhances the promoter activity. Disruption of the KLF17 gene in the endometrial cells abolishes CORIN expression. In mice, Klf17 is up-regulated in the pregnant uterus. Klf17 deficiency prevents uterine Corin expression in pregnancy. Moreover, Klf17-deficient mice have poorly remodeled uterine spiral arteries and develop gestational hypertension and proteinuria. Together, our results reveal an important function of KLF17 in regulating Corin expression and uterine physiology in pregnancy.Whole-exome sequencing (WES) has facilitated the discovery of genetic lesions underlying monogenic disorders. Incomplete penetrance and variable expressivity suggest a contribution of additional genetic lesions to clinical manifestations and outcome. Some monogenic disorders may therefore actually be digenic. However, only a few digenic disorders have been reported, all discovered by candidate gene approaches applied to at least one locus. We propose here a two-locus genome-wide test for detecting digenic inheritance in WES data. This approach uses the gene as the unit of analysis and tests all pairs of genes to detect pairwise gene × gene interactions underlying disease. It is a case-only method, which has several advantages over classic case-control tests, in particular by avoiding recruitment of controls. Our simulation studies based on real WES data identified two major sources of type I error inflation in this case-only test linkage disequilibrium and population stratification. Both were corrected by specific procedures.

Autoři článku: Moonkamper2672 (Skaarup Thorpe)