Mohammadpotts9934

Z Iurium Wiki

Traumatic injury to the peripheral nervous system (PNS) is the most common cause of acquired nerve damage and impairs the quality of life of patients. The success of nerve regeneration depends on distal stump degeneration, tissue clearance and remodeling, processes in which the immune system participates. We previously reported improved motor recovery in sciatic nerve crush mice following adoptive transfer of lymphocytes, which migrated to the lesion site. However, lymphocyte activity and the nerve tissue response remain unexplored. Thus, in the present study, we evaluated sciatic nerve regeneration and T cell polarization in lymphocyte recipient mice. Splenic lymphocytes were isolated from mice 14 days after sciatic nerve crush and transferred to axotomized animals three days postinjury. Immediate lymphocyte migration to the crushed nerve was confirmed by in vivo imaging. Phenotyping of T helper (Th) cells by flow cytometry revealed an increased frequency of the proinflammatory Th1 and Th17 cell subsets in recipient mice at 7 days and showed that the frequency of these cells remained unchanged for up to 21 days. Moreover, nerve regeneration was improved upon cell therapy, as shown by sustained immunolabeling of axons, Schwann cells, growth-associated protein 43 and BDNF from 14 to 28 days after lesion. Macrophage and IgG immunolabeling were also higher in cell-transferred mice at 14 and 21 days following nerve crush. Functionally, we observed better sensory recovery in the lymphocyte-treated group. Overall, our data demonstrate that enhanced inflammation early after nerve injury has beneficial effects for the regenerative process, improving tissue clearance and axonal regrowth towards the target organs. Macrophages are involved in choroidal neovascularization (CNV). The mechanistic target of rapamycin complex 1 (mTORC1) is a central cell regulator, but mTORC1 function in macrophages in CNV is not fully understood. We explored the effect of mTORC1 pathway regulation on macrophages in CNV. A laser-induced murine CNV model was performed. Expression of phospho-S6 and F4/80 in CNV lesions was analyzed by immunofluorescence. Macrophages in CNV lesions were found at 1 day after laser treatment, reached a peak at 5 days, and decreased at 7 and 14 days. mTORC1 activity of cells in CNV lesions was increased from 3 to 7 days, and deceased at 14 days. Most infiltrating macrophages in CNV lesions had strong mTORC1 activity at 3 and 5 days that subsequently decreased. In vitro, THP-1 macrophages were polarized to M1 or M2 with rapamycin or siRNA treatment. The human retinal pigment epithelium (RPE) cell line ARPE-19 was co-cultured with macrophages. Cytokine expression of macrophages and ARPE-19 cells was detected by quantitative PCR. Inhibiting mTORC1 activity of macrophages reduced M1 and strengthened M2, which was reversed by mTORC1 hyperactivation. Both M1 and M2 macrophages induced RPE cells to express less PEDF and more MMP9, IL-1β and MCP-1. Inhibiting or enhancing mTORC1 activity of macrophages changed cytokine expression of RPE cells. Together, we demonstrated that macrophage functions in CNV were regulated partly by the mTORC1 pathway, and mTORC1 activity of macrophages influenced the expression of cytokines that are associated with CNV development in RPE cells. This study provides more understanding about the regulatory mechanism of macrophages in CNV. Modulation of excitability in the motor system can be observed before overt movements but also in response to covert invitations to act. We asked whether such changes can be induced in the absence of even covert motor instructions, namely, as a function of the location of the hand with reference to the body. Participants received single-pulse TMS over the motor cortex while they placed their contralateral hand (right hand in Experiment 1, left hand in Experiment 2) to the right or left of their body midline, and looked either at or away from their hand. In both experiments, greater excitability was observed when gaze was directed to the right. This finding is interpreted as a consequence of left brain lateralization of motor attention. Contrary to our expectations, we furthermore consistently observed greater excitability when gaze was directed away from the hand. To account for this finding, we introduce the concept of "surveillance attention" which, we speculate, modulates cortical gain, and thereby cortical excitability. Its function is to increase readiness to act in non-foveated regions of space. Such a process confers an advantage in environments, like those in which humans evolved, in which threatening stimuli may appear unexpectedly, and at any time. Visual perception is introspectively stable and continuous across eye movements. CremophorEL It has been hypothesized that displacements in retinal input caused by eye movements can be dissociated from displacements in the external world using extra-retinal information, such as a corollary discharge from the oculomotor system. The extra-retinal information can inform the visual system about an upcoming eye movement and accompanying displacements in retinal input. The parietal cortex has been hypothesized to be critically involved in integrating retinal and extra-retinal information. Two tasks have been widely used to assess the quality of this integration double-step saccades and intra-saccadic displacements. Double-step saccades performed by patients with parietal cortex lesions seemed to show hypometric second saccades. However, recently idea has been refuted by demonstrating that patients with very similar lesions were able to perform the double step saccades, albeit taking multiple saccades to reach the saccade target. So, it seems that extra-retinal information is still available for saccade execution after a lesion to the parietal lobe. Here, we investigated whether extra-retinal signals are also available for perceptual judgements in nine patients with strokes affecting the posterior parietal cortex. We assessed perceptual continuity with the intra-saccadic displacement task. We exploited the increased sensitivity when a small temporal blank is introduced after saccade offset (blank effect). The blank effect is thought to reflect the availability of extra-retinal signals for perceptual judgements. Although patients exhibited a relative difference to control subjects, they still demonstrated the blank effect. The data suggest that a lesion to the posterior parietal cortex (PPC) alters the processing of extra-retinal signals but does not abolish their influence altogether.

Autoři článku: Mohammadpotts9934 (Mills Espersen)