Michaelsencompton0902

Z Iurium Wiki

This paper assesses the aspects related to sustainability of polymer composites, focusing on the two main components of a composite, the matrix and the reinforcement/filler. Most studies analyzed deals with the assessment of the composite performance, but not much attention has been paid to the life cycle assessment (LCA), biodegradation or recyclability of these materials, even in those papers containing the terms "sustainable" (or its derivate words), "green" or "eco". Many papers claim about the sustainable or renewable character of natural fiber composites, although, again, analysis about recyclability, biodegradation or carbon footprint determination of these materials have not been studied in detail. More studies focusing on the assessment of these composites are needed in order to clarify their potential environmental benefits when compared to other types of composites, which include compounds not obtained from biological resources. LCA methodology has only been applied to some case studies, finding enhanced environmental behavior for natural fiber composites when compared to synthetic ones, also showing the potential benefits of using recycled carbon or glass fibers. Biodegradable composites are considered of lesser interest to recyclable ones, as they allow for a higher profitability of the resources. Finally, it is interesting to highlight the enormous potential of waste as raw material for composite production, both for the matrix and the filler/reinforcement; these have two main benefits no resources are used for their growth (in the case of biological materials), and fewer residues need to be disposed.The performance of high-rate supercapacitors requires fine morphological and electrical properties of the electrode. Polyaniline (PANI), as one of the most promising materials for energy storage, shows different behaviour on different substrates. The present study reports on the surface modification of fluorine doped tin oxide (FTO) with the sodium phytate doped PANI without any binder and its utilization as a novel current collector in symmetric supercapacitor devices. Proteases antagonist The electrochemical behaviour of the sodium phytate doped PANI thin film with and without a binder on fluorine doped tin oxide (FTO) as current collector was investigated by cyclic voltammetry (CV). The electrode without a binder showed higher electrocatalytic efficiency. A symmetrical cell configuration was therefore constructed with the binder-free electrodes. The device showed excellent electrochemical performance with high specific capacities of 550 Fg-1 at 1 Ag-1 and 355 Fg-1 at 40 Ag-1 calculated from galvanostatic discharge curves. The low charge transfer and solution resistances (RCT and RS) of 7.86 Ωcm² and 3.58 × 10-1 Ωcm², respectively, and superior rate capability of 66.9% over a wide current density range of 1 Ag-1 to 40 Ag-1 and excellent cycling stability with 90% of the original capacity over 1000 charge/discharge cycles at 40 Ag-1, indicated it to be an efficient energy storage device. Moreover, the gravimetric energy and power density of the supercapacitor was remarkably high, providing 73.8 Whkg-1 at 500 Wkg-1, respectively. The gravimetric energy density remained stable as the power density increased. It even reached up to 49.4 Whkg-1 at a power density of up to 20 Wkg-1.The application of natural polymer matrices as medical device components or food packaging materials has gained a considerable popularity in recent years, this has occurred in response to the increasing plastic pollution hazard. Currently, constant progress is being made in designing two-component or three-component systems that combine natural materials which help to achieve a quality comparable to the purely synthetic counterparts. This study describes a green synthesis preparation of new bionanocomposites consisting of starch/chitosan/graphene oxide (GO), that possess improved biological activities; namely, good tolerability by human cells with concomitant antimicrobial activity. The structural and morphological properties of bionanocomposites were analyzed using the following techniques dynamic light scattering, scanning and transmission electron microscopy, wettability and free surface energy determination, and Fourier transform infrared spectroscopy. The study confirmed the homogenous distribution of GOich make them a promising alternative for purely synthetic materials.The synergic features and enhancing strategies for various photopolymerization systems are reviewed by kinetic schemes and the associated measurements. The important topics include (i) photo crosslinking of corneas for the treatment of corneal diseases using UVA-light (365 nm) light and riboflavin as the photosensitizer; (ii) synergic effects by a dual-function enhancer in a three-initiator system; (iii) synergic effects by a three-initiator C/B/A system, with electron-transfer and oxygen-mediated energy-transfer pathways; (iv) copper-complex (G1) photoredox catalyst in G1/Iod/NVK systems for free radical (FRP) and cationic photopolymerization (CP); (v) radical-mediated thiol-ene (TE) photopolymerizations; (vi) superbase photogenerator based-catalyzed thiol-acrylate Michael (TM) addition reaction; and the combined system of TE and TM using dual wavelength; (vii) dual-wavelength (UV and blue) controlled photopolymerization confinement (PC); (viii) dual-wavelength (UV and red) selectively controlled 3D printing; and (ix) three-wavelength selectively controlled in 3D printing and additive manufacturing (AM). With minimum mathematics, we present (for the first time) the synergic features and enhancing strategies for various systems of multi-components, initiators, monomers, and under one-, two-, and three-wavelength light. Therefore, this review provides not only the bridging between modeling and measurements, but also guidance for further experimental studies and new applications in 3D printings and additive manufacturing (AM), based on the innovative concepts (kinetics/schemes).With the development of integrated devices, the local hot spot has become a critical problem to guarantee the working efficiency and the stability. In this work, we proposed an innovative approach to deliver graphene foam/polyaniline@epoxy composites (GF/PANI@EP) with improvement in the thermal and mechanical property performance. The graphene foam was firstly modified by the grafting strategy of p-phenylenediamine to anchor reactive sites for further in-situ polymerization of PANI resulting in a conductive network. The thermal conductivity (κ) and electromagnetic interference shielding (EMI) performance of the optimized GF/PANI41@EP is significantly enhanced by 238% and 1184%, respectively, compared to that of pristine EP with superior reduced modulus and hardness. Such a method to deliver GF composites can not only solve the agglomeration problem in traditional high content filler casting process, but also provides an effective way to build up conductive network with low density for thermal management of electronic devices.Computational fluid dynamics (CFD) simulation is an important tool as it enables engineers to study different design options without a time-consuming experimental workload. However, the prediction accuracy of any CFD simulation depends upon the set boundary conditions and upon the applied rheological constitutive equation. In the present study the viscoelastic nature of an unfilled gum acrylonitrile butadiene rubber (NBR) is considered by applying the integral and time-dependent Kaye-Bernstein-Kearsley-Zapas (K-BKZ) rheological model. First, exhaustive testing is carried out in the linear viscoelastic (LVE) and non-LVE deformation range including small amplitude oscillatory shear (SAOS) as well as high pressure capillary rheometer (HPCR) tests. Next, three abrupt capillary dies and one tapered orifice die are modeled in Ansys POLYFLOW. The pressure prediction accuracy of the K-BKZ/Wagner model was found to be excellent and insensitive to the applied normal force in SAOS testing as well as to the relation of first and second normal stress differences, provided that damping parameters are fitted to steady-state rheological data. link2 Moreover, the crucial importance of viscoelastic modeling is proven for rubber materials, as two generalized Newtonian fluid (GNF) flow models severely underestimate measured pressure data, especially in contraction flow-dominated geometries.Without fillers, rubber types such as silicone rubber exhibit poor mechanical, thermal, and electrical properties. Carbon black (CB) is traditionally used as a filler in the rubber matrix to improve its properties, but a high content (nearly 60 per hundred parts of rubber (phr)) is required. However, this high content of CB often alters the viscoelastic properties of the rubber composite. link3 Thus, nowadays, nanofillers such as graphene (GE) and carbon nanotubes (CNTs) are used, which provide significant improvements to the properties of composites at as low as 2-3 phr. Nanofillers are classified as those fillers consisting of at least one dimension below 100 nanometers (nm). In the present review paper, nanofillers based on carbon nanomaterials such as GE, CNT, and CB are explored in terms of how they improve the properties of rubber composites. These nanofillers can significantly improve the properties of silicone rubber (SR) nanocomposites and have been useful for a wide range of applications, such as strain sensing. Therefore, carbon-nanofiller-reinforced SRs are reviewed here, along with advancements in this research area. The microstructures, defect densities, and crystal structures of different carbon nanofillers for SR nanocomposites are characterized, and their processing and dispersion are described. The dispersion of the rubber composites was reported through atomic force microscopy (AFM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The effect of these nanofillers on the mechanical (compressive modulus, tensile strength, fracture strain, Young's modulus, glass transition), thermal (thermal conductivity), and electrical properties (electrical conductivity) of SR nanocomposites is also discussed. Finally, the application of the improved SR nanocomposites as strain sensors according to their filler structure and concentration is discussed. This detailed review clearly shows the dependency of SR nanocomposite properties on the characteristics of the carbon nanofillers.Reducing microbial infections associated with biomedical devices or articles/furniture noted in a hospital or outpatient clinic remains a great challenge to researchers. Due to its stability and low toxicity, the N-halamine compound has been proposed as a potential antimicrobial agent. It can be incorporated into or blended with the FDA-approved biomaterials. Surface grafting or coating of N-halamine was also reported. Nevertheless, the hydrophobic nature associated with its chemical configuration may affect the microbial interactions with the chlorinated N-halamine-containing substrate. In this study, a polymerizable N-halamine compound was synthesized and grafted onto a polyurethane surface via a surface-initiated atom transfer radical polymerization (SI-ATRP) scheme. Further, using the sequential SI-ATRP reaction method, different hydrophilic monomers, namely poly (ethylene glycol) methacrylate (PEGMA), hydroxyethyl methacrylate (HEMA), and [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (SBMA), were also grafted onto the polyurethane (PU) substrate before the N-halamine grafting reaction to change the surface properties of the N-halamine-modified substrate.

Autoři článku: Michaelsencompton0902 (Durham McMahan)