Meyerscostello6126

Z Iurium Wiki

NECL is a general meta-strategy that improves the efficiency and effectiveness of many state-of-the-art graph embedding algorithms based on node proximity, including DeepWalk, Node2vec, and LINE. Extensive experiments validate the efficiency and effectiveness of our method, which decreases embedding time and improves classification accuracy as evaluated on single and multi-label classification tasks with large real-world graphs.Machine learning algorithms are becoming increasingly prevalent and performant in the reconstruction of events in accelerator-based neutrino experiments. These sophisticated algorithms can be computationally expensive. At the same time, the data volumes of such experiments are rapidly increasing. The demand to process billions of neutrino events with many machine learning algorithm inferences creates a computing challenge. We explore a computing model in which heterogeneous computing with GPU coprocessors is made available as a web service. The coprocessors can be efficiently and elastically deployed to provide the right amount of computing for a given processing task. With our approach, Services for Optimized Network Inference on Coprocessors (SONIC), we integrate GPU acceleration specifically for the ProtoDUNE-SP reconstruction chain without disrupting the native computing workflow. With our integrated framework, we accelerate the most time-consuming task, track and particle shower hit identification, by a factor of 17. This results in a factor of 2.7 reduction in the total processing time when compared with CPU-only production. For this particular task, only 1 GPU is required for every 68 CPU threads, providing a cost-effective solution.The Office of the National Coordinator for Health Information Technology estimates that 96% of all U.S. hospitals use a basic electronic health record, but only 62% are able to exchange health information with outside providers. Barriers to information exchange across EHR systems challenge data aggregation and analysis that hospitals need to evaluate healthcare quality and safety. A growing number of hospital systems are partnering with third-party companies to provide these services. In exchange, companies reserve the rights to sell the aggregated data and analyses produced therefrom, often without the knowledge of patients from whom the data were sourced. Such partnerships fall in a regulatory grey area and raise new ethical questions about whether health, consumer, or health and consumer privacy protections apply. The current opinion probes this question in the context of consumer privacy reform in California. It analyzes protections for health information recently expanded under the California Consumer Pre fostered and presents ways both for-profit and nonprofit hospitals can sustain patient trust when negotiating partnerships with third-party data aggregation companies.The High-Luminosity upgrade of the Large Hadron Collider (LHC) will see the accelerator reach an instantaneous luminosity of 7 × 1034 cm-2 s-1 with an average pileup of 200 proton-proton collisions. These conditions will pose an unprecedented challenge to the online and offline reconstruction software developed by the experiments. The computational complexity will exceed by far the expected increase in processing power for conventional CPUs, demanding an alternative approach. Industry and High-Performance Computing (HPC) centers are successfully using heterogeneous computing platforms to achieve higher throughput and better energy efficiency by matching each job to the most appropriate architecture. In this paper we will describe the results of a heterogeneous implementation of pixel tracks and vertices reconstruction chain on Graphics Processing Units (GPUs). The framework has been designed and developed to be integrated in the CMS reconstruction software, CMSSW. The speed up achieved by leveraging GPUs allows for more complex algorithms to be executed, obtaining better physics output and a higher throughput.The current study uses a network analysis approach to explore the STEM pathways that students take through their final year of high school in Aotearoa New Zealand. By accessing individual-level microdata from New Zealand's Integrated Data Infrastructure, we are able to create a co-enrolment network comprised of all STEM assessment standards taken by students in New Zealand between 2010 and 2016. We explore the structure of this co-enrolment network though use of community detection and a novel measure of entropy. We then investigate how network structure differs across sub-populations based on students' sex, ethnicity, and the socio-economic-status (SES) of the high school they attended. Results show the structure of the STEM co-enrolment network differs across these sub-populations, and also changes over time. Selleckchem Itacitinib We find that, while female students were more likely to have been enrolled in life science standards, they were less well represented in physics, calculus, and vocational (e.g., agriculture, practical technology) standards. Our results also show that the enrollment patterns of Asian students had lower entropy, an observation that may be explained by increased enrolments in key science and mathematics standards. Through further investigation of differences in entropy across ethnic group and high school SES, we find that ethnic group differences in entropy are moderated by high school SES, such that sub-populations at higher SES schools had lower entropy. We also discuss these findings in the context of the New Zealand education system and policy changes that occurred between 2010 and 2016.Accurate monitoring of crop condition is critical to detect anomalies that may threaten the economic viability of agriculture and to understand how crops respond to climatic variability. Retrievals of soil moisture and vegetation information from satellite-based remote-sensing products offer an opportunity for continuous and affordable crop condition monitoring. This study compared weekly anomalies in accumulated gross primary production (GPP) from the SMAP Level-4 Carbon (L4C) product to anomalies calculated from a state-scale weekly crop condition index (CCI) and also to crop yield anomalies calculated from county-level yield data reported at the end of the season. We focused on barley, spring wheat, corn, and soybeans cultivated in the continental United States from 2000 to 2018. We found that consistencies between SMAP L4C GPP anomalies and both crop condition and yield anomalies increased as crops developed from the emergence stage (r 0.4-0.7) and matured (r 0.6-0.9) and that the agreement was better in drier regions (r 0.

Autoři článku: Meyerscostello6126 (Melton Hart)