Meredithsmed3943
DJ-1 is a multifunctional protein associated with pathomechanisms implicated in different chronic diseases including neurodegeneration, cancer and diabetes. Several of the physiological functions of DJ-1 are not yet fully understood; however, in the last years, there has been increasing evidence for a potential role of DJ-1 in the regulation of cellular metabolism. Here, we summarize the current knowledge on specific functions of DJ-1 relevant to cellular metabolism and their role in modulating metabolic pathways. Further, we illustrate pathophysiological implications of the metabolic effects of DJ-1 in the context of neurodegeneration in Parkinson´s disease.Three-dimensional (3D) printing is gaining numerous advances in manufacturing approaches both at macro- and nanoscales. Three-dimensional printing is being explored for various biomedical applications and fabrication of nanomedicines using additive manufacturing techniques, and shows promising potential in fulfilling the need for patient-centric personalized treatment. Initial reports attributed this to availability of novel natural biomaterials and precisely engineered polymeric materials, which could be fabricated into exclusive 3D printed nanomaterials for various biomedical applications as nanomedicines. Nanomedicine is defined as the application of nanotechnology in designing nanomaterials for different medicinal applications, including diagnosis, treatment, monitoring, prevention, and control of diseases. Nanomedicine is also showing great impact in the design and development of precision medicine. In contrast to the "one-size-fits-all" criterion of the conventional medicine system, personalized or precision medicines consider the differences in various traits, including pharmacokinetics and genetics of different patients, which have shown improved results over conventional treatment. In the last few years, much literature has been published on the application of 3D printing for the fabrication of nanomedicine. This article deals with progress made in the development and design of tailor-made nanomedicine using 3D printing technology.The Coronavirus disease 2019 (COVID-19) has become one of the threats to the world. Computed tomography (CT) is an informative tool for the diagnosis of COVID-19 patients. Many deep learning approaches on CT images have been proposed and brought promising performance. However, due to the high complexity and non-transparency of deep models, the explanation of the diagnosis process is challenging, making it hard to evaluate whether such approaches are reliable. In this paper, we propose a visual interpretation architecture for the explanation of the deep learning models and apply the architecture in COVID-19 diagnosis. Our architecture designs a comprehensive interpretation about the deep model from different perspectives, including the training trends, diagnostic performance, learned features, feature extractors, the hidden layers, the support regions for diagnostic decision, and etc. With the interpretation architecture, researchers can make a comparison and explanation about the classification performance, gain insight into what the deep model learned from images, and obtain the supports for diagnostic decisions. Our deep model achieves the diagnostic result of 94.75%, 93.22%, 96.69%, 97.27%, and 91.88% in the criteria of accuracy, sensitivity, specificity, positive predictive value, and negative predictive value, which are 8.30%, 4.32%, 13.33%, 10.25%, and 6.19% higher than that of the compared traditional methods. The visualized features in 2-D and 3-D spaces provide the reasons for the superiority of our deep model. Our interpretation architecture would allow researchers to understand more about how and why deep models work, and can be used as interpretation solutions for any deep learning models based on convolutional neural network. It can also help deep learning methods to take a step forward in the clinical COVID-19 diagnosis field.CTRP-3 (C1q/TNF-related protein-3) is an adipokine with endocrine and immunological function. The impact of adipocyte CTRP-3 production on systemic CTRP-3 concentrations and on adipocyte biology is unknown. A murine model of adipocyte CTRP-3 knockout (KO) was established (via the Cre/loxP system). https://www.selleckchem.com/products/b022.html Serum adipokine levels were quantified by ELISA and adipose tissue (AT) gene expression by real-time PCR. Preadipocytes were isolated from AT and differentiated into adipocytes. Comparative transcriptome analysis was applied in adipocytes and liver tissue. Body weight and AT mass were reduced in CTRP-3 KO mice together with decreased serum leptin. In primary cells from visceral AT of KO mice, expression of adiponectin, progranulin, and resistin was induced, while peroxisome proliferator activated receptor γ (PPARγ) was decreased. M1/M2 macrophage polarization markers were shifted to a more anti-inflammatory phenotype. CTRP-3 expression in AT did not contribute to serum concentrations. AT and liver morphology remained unaffected by CTRP-3 KO. Myelin transcription factor 1-like (Myt1l) was identified as a highly upregulated gene. In conclusion, adipocyte CTRP-3 has a role in adipogenesis and AT weight gain whereas adipocyte differentiation is not impaired by CTRP-3 deficiency. Since no effects on circulating CTRP-3 levels were observed, the impact of adipocyte CTRP-3 KO is limited to adipose tissue. Modified AT gene expression indicates a rather anti-inflammatory phenotype.Road construction is an activity that demands a significant amount of aggregates for bituminous mixtures. In addition, these aggregates must be of a suitable quality for use, even more so on high traffic roads. In response to this problem, and in order to avoid the extraction of new raw materials, research is being carried out using industrial waste as a substitute for conventional aggregates. In this way, the extraction of raw materials is reduced and landfilling of waste is avoided. However, these wastes must have certain properties and environmental advantages over natural aggregates. Otherwise, the use of waste would not be environmentally beneficial but would be more damaging to the environment. For this reason, this research evaluates the viability of using electric arc furnace slag as aggregates for bituminous mixtures, the main objectives being the determination of the characteristics of the by-product, the particularities and the critical points to be taken into account for its subsequent use in mixtures.