Medeirosgoodwin2171

Z Iurium Wiki

Electron-rich, late transition metals are known to act as hydrogen-bonding (HBd) acceptors. In this regard, Pt(ii) centres in square-planar environments are particularly efficient. It is however puzzling that no convincing experimental evidence is currently available for the isoelectronic neighbour Au(iii) being involved in HBd interactions. We report now on the synthesis and characterisation of two series of isoleptic and isoelectronic (d8) compounds [(CF3)3Pt(L)]- and (CF3)3Au(L), where the L ligands are based on the quinoline frame and have been selected to favour HBd with the metal centre. Strong HBd interactions were actually found in the Pt(ii) compounds, based on structural and spectroscopic evidence, and they were further confirmed by theoretical calculations. In contrast, no evidence was obtained in the Au(iii) case. In order to find the reason underlying this general disparity, we undertook a detailed theoretical analysis of the model systems [(CF3)3Pt(py)]- and (CF3)3Au(py). This study revealed that the filled dz2 orbital is the HOMO in the case of Pt(ii), but is buried in the lower energy levels in the case of Au(iii). The sharply different electronic configurations involve ligand-field inversion on going from Pt to the next element Au. This is not a gradual but an abrupt change, which invalidates Au(iii) as a HBd-acceptor wherever ligand-field inversion occurs.The borylation of ligated dinitrogen by 1,3-B-H bond addition over a W-N[triple bond, length as m-dash]N unit using various hydroboranes has been examined. In a previous study, we have shown that Piers' borane (1) reacted with the tungsten dinitrogen complex 2 to afford a boryldiazenido-hydrido-tungsten species. The ease and mildness of this reaction have encouraged us to extend its scope, with the working hypothesis that 1 could potentially catalyse the 1,3-B-H bond addition of other hydroboranes. Under productive reaction conditions, dicyclohexylborane (HBCy2) and diisopinocampheylborane (HBIpc2) underwent retro-hydroboration to give cyclohexylborane (H2BCy) or isopinocampheylborane (H2BIpc), respectively; these monoalkylboranes act as N2-borylating agents in the presence of a catalytic amount of 1. Under similar conditions, 9-borabicyclononane (9-BBN) slowly adds over the W-N[triple bond, length as m-dash]N unit without rearrangement to a monoalkylborane. Catecholborane (HBcat) undergoes the 1,3-B-H bond addition without the need for a catalyst. We were not able to build more than one covalent B-N bond between the terminal N of the N2 ligand and the boron reagent with this methodology.A new copper-catalyzed two-component amino-benzoyloxylation of unactivated alkenes of unsaturated ketoximes with O-benzoylhydroxylamines as the benzoyloxy sources is developed. Chemoselectivity of this method toward amino-benzoyloxylation or oxy-benzoyloxylation of alkenyl ketoximes relies on the position of the tethered olefins, and provides an external-oxidant-free alkene difunctionalization route that directly utilizes O-benzoylhydroxylamines as the benzoyloxy radical precursors and internal oxidants for the divergent synthesis of cyclic nitrones and isoxazolines.A method for the addition of fluorinated alkyl bromides to alkenes is described. The reaction proceeds under visible light irradiation in the presence of two catalysts Ir(ppy)3 and N-heterocyclic carbene ligated copper bromide (IMesCuBr). The role of the iridium photocatalyst is to generate the fluoralkyl radical, while the copper promotes formation of the carbon-bromine bond.The structural, vibrational and electronic properties of the compressed β-Sb2O3 polymorph, a.k.a. mineral valentinite, have been investigated in a joint experimental and theoretical study up to 23 GPa. The compressibility of the lattice parameters, unit-cell volume and polyhedral unit volume as well as the behaviour of its Raman- and IR-active modes under compression have been interpreted on the basis of ab initio theoretical simulations. Valentinite shows an unusual compressibility up to 15 GPa with four different pressure ranges, whose critical pressures are 2, 4, and 10 GPa. The pressure dependence of the main structural units, the lack of soft phonons, and the electronic density charge topology address the changes at those critical pressures to isostructural phase transitions of degree higher than 2. In particular, the transitions at 2 and 4 GPa can be ascribed to the changes in the interaction between the stereochemically-active lone electron pairs of Sb atoms under compression. The changes observed above 10 GPa, characterized by a general softening of several Raman- and IR-active modes, point to a structural instability prior to the 1st-order transition occurring above 15 GPa. Above this pressure, a tentative new high-pressure phase (s.g. Pcc2) has been assigned by single-crystal and powder X-ray diffraction measurements.Glioblastoma is the most common and aggressive type of malignant brain tumor with poor survival and limited therapeutic options. Theranostic anticancer agents with dual functions of diagnosis and therapy are highly attractive. Self-immolation reaction is a promising approach for theranostic prodrugs triggered by the tumor microenvironment. Overexpression of hydrogen sulfide (H2S) in glioma cells becomes a potential stimulus for activating prodrugs. Herein, a novel H2S responsive agent (SNF) containing amonafide (ANF), a self-immolative linker and a trigger group has been developed for imaging and chemotherapy in living cells. SNF exhibited high selectivity and sensitivity towards H2S and also showed excellent lysosome-targeted capability. The activated SNF could translocate to the nucleus, causing DNA damage and blocking the cell cycle. Idarubicin More mechanistic studies indicated that SNF altered the mitochondrial membrane potential and induced autophagy in human glioblastoma-astrocytoma (U87MG). In addition, 3D multicellular U87MG tumor spheroids were used to further confirm the active drug release and high anti-proliferative activity of SNF. This approach may provide a general strategy for developing H2S-triggered prodrugs for synergic cancer therapy.

Autoři článku: Medeirosgoodwin2171 (Behrens Ayala)