Mckennahinson2233

Z Iurium Wiki

Nrf2 encodes a transcription factor best known for regulating the expression of antioxidant and detoxification genes. Recent evidence suggested that Nrf2 mediates metabolic reprogramming in cancer cells. However, the role of Nrf2 in the biochemical metabolism of cardiac cells has not been studied. Using LC-MS/MS-based metabolomics, we addressed whether knocking out the Nrf2 gene in AC16 human cardiomyocytes affects metabolic reprogramming by oxidative stress. Profiling the basal level metabolites showed an elevated pentose phosphate pathway and increased levels of sugar alcohols, sorbitol, L-arabitol, xylitol and xylonic acid, in Nrf2 KO cells. With sublethal levels of oxidative stress, depletion of NAD, an increase of GDP and elevation of sugar alcohols, sorbitol and dulcitol, were detected in parent wild type (WT) cells. Knocking out Nrf2 did not affect these changes. Biochemical assays confirmed depletion of NAD in WT and Nrf2 KO cells due to H2O2 treatment. These data support that although Nrf2 deficiency caused baseline activation of the pentose phosphate pathway and sugar alcohol synthesis, a brief exposure to none-lethal doses of H2O2 caused NAD depletion in an Nrf2 independent manner. Loss of NAD may contribute to oxidative stress associated cell degeneration as observed with aging, diabetes and heart failure.Myocardial infarction (MI) produces acute changes in strain and stiffness within the infarct that can affect remote areas of the left ventricle (LV) and drive pathological remodeling. We hypothesized that intramyocardial delivery of a hydrogel within the MI region would lower wall stress and reduce adverse remodeling in Yorkshire pigs (n = 5). 99mTc-Tetrofosmin SPECT imaging defined the location and geometry of induced MI and border regions in pigs, and in vivo and ex vivo contrast cine computed tomography (cineCT) quantified deformations of the LV myocardium. Serial in vivo cineCT imaging provided data in hearts from control pigs (n = 3) and data from pigs (n = 5) under baseline conditions before MI induction, post-MI day 3, post-MI day 7, and one hour after intramyocardial delivery of a hyaluronic acid (HA)-based hydrogel with shear-thinning and self-healing properties to the central infarct area. Isolated, excised hearts underwent similar cineCT imaging using an ex vivo perfused heart preparation with cyclic LV pressurization. Deformations were evaluated using nonlinear image registration of cineCT volumes between end-diastole (ED) and end-systole (ES), and 3D Lagrangian strains were calculated from the displacement gradients. Post-MI day 3, radial, circumferential, maximum principal, and shear strains were reduced within the MI region (p 0.47, p less then 0.004), indicating that cineCT strain measures could predict MI location and degree of injury. Post-hydrogel day 7 post-MI, LV EDV was significantly reduced (p = 0.009), EF increased (p = 0.048), and radial (p = 0.021), maximum principal (p = 0.051), and shear strain (p = 0.047) increased within regions bordering the infarct. A smaller strain improvement within the infarct and normal regions was also noted on average along with an improvement in SV in 4 out of 5 hearts. CineCT provides a reliable method to assess regional changes in strains post-MI and the therapeutic effects of intramyocardial hydrogel delivery.Cardiac myosin-binding protein C (cMyBP-C) is a thick filament-associated protein of the sarcomere and a potential therapeutic target for treating contractile dysfunction in heart failure. Mimicking the structural dynamics of phosphorylated cMyBP-C by small-molecule drug binding could lead to therapies that modulate cMyBP-C conformational states, and thereby function, to improve contractility. We have developed a human cMyBP-C biosensor capable of detecting intramolecular structural changes due to phosphorylation and mutation. Using site-directed mutagenesis and time-resolved fluorescence resonance energy transfer (TR-FRET), we substituted cysteines in cMyBP-C N-terminal domains C0 through C2 (C0-C2) for thiol-reactive fluorescent probe labeling to examine C0-C2 structure. We identified a cysteine pair that upon donor-acceptor labeling reports phosphorylation-sensitive structural changes between the C1 domain and the tri-helix bundle of the M-domain that links C1 to C2. Phosphorylation reduced FRET efficiency by ~18%, corresponding to a ~11% increase in the distance between probes and a ~30% increase in disorder between them. The magnitude and precision of phosphorylation-mediated TR-FRET changes, as quantified by the Z'-factor, demonstrate the assay's potential for structure-based high-throughput screening of compounds for cMyBP-C-targeted therapies to improve cardiac performance in heart failure. Additionally, by probing C1's spatial positioning relative to the tri-helix bundle, these findings provide new molecular insight into the structural dynamics of phosphoregulation as well as mutations in cMyBP-C. Biosensor sensitivity to disease-relevant mutations in C0-C2 was demonstrated by examination of the hypertrophic cardiomyopathy mutation R282W. selleck chemical The results presented here support a screening platform to identify small molecules that regulate N-terminal cMyBP-C conformational states.The formation of high-affinity antibodies that protect against infection requires the formation of germinal centres (GCs), where specialized T follicular helper cells (Tfh) provide help to B cells. Those T-B interactions are critical in supporting isotype switching and affinity maturation of B cells. However, GC responses need to be tightly regulated by specialized Foxp3-expressing T follicular regulatory cells (Tfr). It has been shown that the failure of Tfr cells to regulate GC responses can lead to antibody-mediated autoimmunity. Hence, the balance between protection against infection versus tolerance towards self requires an appropriate regulation of cellular and molecular events within secondary lymphoid tissue. Here, we review the development and biology of these T follicular cell subsets, with special emphasis on the metabolic regulation of Tfh cells, thus contributing to a greater understanding of GC responses.Serotonin(5-HT)ergic projections run from the raphe nuclei to dopamin(DA)ergic cells in substantia nigra/ventral tegmental area (SN/VTA) and to the terminal fields of DA neurons in nucleus accumbens, caudateputamen and neocortex. In the present studies, we assessed the effect of the 5-HT1A receptor (R) antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarbox-amide maleate (WAY-100635) on motor and exploratory behaviors and on D2/3R binding in the rat brain with in vivo imaging methods. D2/3R binding was determined in the same animals after systemic application of WAY-100635 (0.4 mg/kg) and 0.9% saline (SAL), respectively, with [123I]IBZM as SPECT ligand. Anatomical information for the delineation of the target regions was obtained with dedicated small animal MRI. Immediately after treatment with WAY-100635 or SAL, motor/exploratory behaviors were assessed for 30 min in two different batches of animals in an open field. WAY-100635 reduced D2/3R binding in caudateputamen, thalamus, frontal cortex, parietal cortex and ventral hippocampus relative to SAL. Network analysis of regional binding data after WAY-100635 yielded positive connections between (1) caudateputamen and substantia nigra/ventral tegmental area, (2) caudateputamen and ventral hippocampus, (3) substantia nigra/ventral tegmental area and parietal cortex, (4) thalamus and dorsal hippocampus and (5) frontal cortex and parietal cortex, which were not present after SAL. Moreover, WAY-100635 decreased parameters of motor activity (overall activity, ambulation duration and frequency) but increased the duration of grooming behavior relative to SAL. The effect on exploration was time-dependent with an early increase and a subsequent decrease of behavioral parameters (rearing duration and frequency, frequency of head-shoulder motility). For WAY-100635, findings imply a region-specificity as well as a time-dependency of DAergic action.

Radiation therapy (RT) is a major modality for the treatment of prostate cancer (PCa), especially castration-resistant PCa (CRPC). However, hypoxia, often seen in PCa tumors, leads to radiation-resistance. This work investigates the effect of a novel oxygen-generating polymer-lipid manganese dioxide nanoparticle (PLMDs) on improving RT outcomes in CRPC xenograft models by modulating the tumor microenvironment (TME) both before and after RT.

Human PC3 and DU145 PCa cells were used to investigate clonogenic inhibition and DNA repair pathways in vitro. Tumor hypoxia and post-RT angiogenesis were evaluated in a PC3-bearing SCID mouse model. PC3 and DU145 xenografts were used to study the efficacy of PLMD in combination with single or fractionated RT.

PLMD plus RT significantly inhibited clonogenic potential, increased DNA double-strand breaks, and reduced DNA damage repair in hypoxic PC3 and DU145 cells as compared to RT alone. PLMD significantly reduced hypoxia-positive areas, hypoxia induced factor 1α (HIF-1α) expression, and protein carbonyl levels (a measure of oxidative stress). Application of PLMD with RT decreased RT-induced angiogenic biomarkers by up to 3-fold. Treatment of the human CRPC xenografts with PLMD plus RT (single or fractionated doses) significantly prolonged median survival of the host compared to RT alone resulting in up to a 40% curative rate.

PLMD treatment modulated TME and sensitized hypoxic human CRPC cells to RT thus enhancing the efficacy of RT. These results confirmed the potential of PLMD as an adjuvant to RT for the treatment of hypoxic CRPC.

PLMD treatment modulated TME and sensitized hypoxic human CRPC cells to RT thus enhancing the efficacy of RT. These results confirmed the potential of PLMD as an adjuvant to RT for the treatment of hypoxic CRPC.

Wound healing complications (WHC), osteoradionecrosis (ORN), and nerve damage (ND) are common adverse effects in adult patients with soft tissue sarcomas of the extremities and the superficial trunk treated with surgery and perioperative high dose rate brachytherapy (PHDRB) alone or combined with external beam radiotherapy (EBRT).

Analysis of the treatment factors contributing to these complications can potentially minimize their occurrence and severity.

A total of 169 patients enrolled in two parallel prospective studies were included in this analysis. Previously Unirradiated cases (Group 1; n=139) were treated with surgical resection, 16-24Gy of PHDRB and 45Gy of EBRT. Adjuvant chemotherapy was given to selected patients with high-grade tumors. Previously irradiated cases (Group 2; n=30) were treated with surgical resection and 32-40Gy of PHDRB without further EBRT.

Patient factors, tumor factors, surgical factors, PHDRB factors and EBRT factors were analyzed using Cox univariate and multivariate an with large tumors receiving high treated volume doses, but no specific constraints can be recommended due to the lack of peripheral nerve definition during brachytherapy planning.

WHC in Previously Unirradiated patients can be minimized by using a more conservative CTV definition together with a meticulous implant technique and planning aimed to minimize hyperdose CTV2cm3 areas. In Previously Irradiated patients WHC may be mimimized considering Lifetime EQD2 Skin2cm3 doses. ORN can be reduced by using the Bone2cm3 EQD2 constraint. ND occurs more frequently in patients with large tumors receiving high treated volume doses, but no specific constraints can be recommended due to the lack of peripheral nerve definition during brachytherapy planning.

Autoři článku: Mckennahinson2233 (Cheng Anderson)