Mckeehaney1193
It is found that at sufficiently high excitation laser power density, LIFPA can even achieve a super-resolution that breaks the limit of optical diffraction. We hope the current investigation can reveal the photobleaching process of fluorescent dye under high laser power density illumination, to enhance our understanding of fluorescent dynamics and photochemistry and develop more powerful photobleaching-related flow diagnostic techniques.The rate and quality of microscale meniscus confined electrodeposition represent the key to micromanipulation based on electrochemistry and are extremely susceptible to the ambient relative humidity, electrolyte concentration, and applied voltage. To solve this problem, based on a neural network and genetic algorithm approach, this paper optimizes the process parameters of the microscale meniscus confined electrodeposition to achieve high-efficiency and -quality deposition. First, with the COMSOL Multiphysics, the influence factors of electrodeposition were analyzed and the range of high efficiency and quality electrodeposition parameters were discovered. Second, based on the back propagation (BP) neural network, the relationships between influence factors and the rate of microscale meniscus confined electrodeposition were established. Then, in order to achieve effective electrodeposition, the determined electrodeposition rate of 5 × 10-8 m/s was set as the target value, and the genetic algorithm was used to optimize each parameter. Finally, based on the optimization parameters obtained, we proceeded with simulations and experiments. The results indicate that the deposition rate maximum error is only 2.0% in experiments. The feasibility and accuracy of the method proposed in this paper were verified.Arrays of superconducting quantum interference devices (SQUIDs) are highly sensitive magnetometers that can operate without a flux-locked loop, as opposed to single SQUID magnetometers. They have no source of ambiguity and benefit from a larger bandwidth. They can be used to measure absolute magnetic fields with a dynamic range scaling as the number of SQUIDs they contain. A very common arrangement for a series array of SQUIDs is with meanders as it uses the substrate area efficiently. As for most layouts with long arrays, this layout breaks the symmetry required for the elimination of adverse self-field effects. We investigate the scaling behavior of series arrays of SQUIDs, taking into account the self-field generated by the bias current flowing along the meander. We propose a design for the partial compensation of this self-field. In addition, we provide a comparison with the case of series arrays of long Josephson junctions, using the Fraunhofer pattern for applications in magnetometry. We find that compensation is required for arrays of the larger size and that, depending on the technology, arrays of long Josephson junctions may have better performance than arrays of SQUIDs.We have used a modified-intake plasma-enhanced metal-organic chemical vapor deposition (MIPEMOCVD) system to fabricate gallium-doped zinc oxide (GZO) thin films with varied Ga content. The MIPEMOCVD system contains a modified intake system of a mixed tank and a spraying terminal to deliver the metal-organic (MO) precursors and a radio-frequency (RF) system parallel to the substrate normal, which can achieve a uniform distribution of organic precursors in the reaction chamber and reduce the bombardment damage. We examined the substitute and interstitial mechanisms of Ga atoms in zinc oxide (ZnO) matrix in MIPEMOCVD-grown GZO thin films through crystalline analyses and Hall measurements. The optimal Ga content of MIPEMOCVD-grown GZO thin film is 3.01 at%, which shows the highest conductivity and transmittance. Finally, the optimal MIPEMOCVD-grown GZO thin film was applied to n-ZnO/p-GaN LED as a window layer. As compared with the indium-tin-oxide (ITO) window layer, the n-ZnO/p-GaN LED with the MIPEMOCVD-grown GZO window layer of the rougher surface and higher transmittance at near UV range exhibits an enhanced light output power owing to the improved light extraction efficiency (LEE).Printed circuit heat exchanger (PCHE) is a promising regenerative device in the sCO2 power cycle, with the advantages of a large specific surface area and compact structure. Its tiny and complex flow channel structure brings enhanced heat transfer performance, while increasing pressure drop losses. It is, thus, important to balance heat transfer and flow resistance performances with the consideration of sCO2 as the working agent. Herein, three-dimensional models are built with a full consideration of fluid flow and heat transfer fields. A trapezoidal channel is developed and its thermal-hydraulic performances are compared with the straight, the S-shape, and the zigzag structures. Nusselt numbers and the Fanning friction factors are analyzed with respect to the changes in Reynolds numbers and structure geometric parameters. A sandwiched structure that couples two hot channels with one cold channel is further designed to match the heat transfer capacity and the velocity of sCO2 flows between different sides. Through this novel design, we can reduce the pressure drop by 75% and increase the regenerative efficiency by 5%. This work can serve as a solid reference for the design and applications of PCHEs.In order to efficiently facilitate various research works related to power converter design and testing for solar photovoltaic (PV) generation systems, it is a great merit to use advanced power-converter-based and digitally controlled PV emulators in place of actual PV modules to reduce the space, cost, and time to obtain the required scenarios of solar irradiances for various functional tests. This paper presents a flexible PV emulator based on gallium nitride (GaN), a wide-bandgap (WBG) semiconductor, and a based synchronous buck converter and controlled with a digital signal processor (DSP). With the help of GaN-based switching devices, the proposed emulator can accurately mimic the dynamic voltage-current characteristics of any PV module under normal irradiance and partial shading conditions. With the proposed PV emulator, it is possible to closely emulate any PV module characteristic both theoretically, based on manufacturer's datasheets, and experimentally, based on measured data from practical PV modules. A curve fitting algorithm is used to handle the real-time generation of control signals for the digital controller. Both simulation with computer software and implementation on 1 kW GaN-based experimental hardware using Texas Instruments DSP as the controller have been carried out. Results show that the proposed emulator achieves efficiency as high as 99.05% and exhibits multifaceted application features in tracking various PV voltage and current parameters, demonstrating the feasibility and excellent performance of the proposed PV emulator.Three-dimensional integration technology provides a promising total solution that can be used to achieve system-level integration with high function density and low cost. In this study, a wafer-level 3D integration technology using PDAP as an intermediate bonding polymer was applied effectively for integration with an SOI wafer and dummy a CMOS wafer. The influences of the procedure parameters on the adhesive bonding effects were determined by Si-Glass adhesive bonding tests. It was found that the bonding pressure, pre-curing conditions, spin coating conditions, and cleanliness have a significant influence on the bonding results. The optimal procedure parameters for PDAP adhesive bonding were obtained through analysis and comparison. The 3D integration tests were conducted according to these optimal parameters. In the tests, process optimization was focused on Si handle-layer etching, PDAP layer etching, and Au pillar electroplating. After that, the optimal process conditions for the 3D integration process were achieved. The 3D integration applications of the micro-bolometer array and the micro-bridge resistor array were presented. It was confirmed that 3D integration based on PDAP adhesive bonding is suitable for the fabrication of system-on-chip when using MEMS and IC integration and that it is especially useful for the fabrication of low-cost suspended-microstructure on-CMOS-chip systems.Pyrrolizidine alkaloids (PAs) are produced by plants as secondary compounds that are the most widely distributed natural toxins. There have been many cases of human toxicity caused by consumption of toxic plant species, as herbal teas and grain or grain products contaminated with PA-containing seeds have been reported. Companies that produce dried spices and tea leaves should examine the PA level in their products. For the first time in the literature, a simple and inexpensive electrochemical assay based on a single-use sensor was introduced for quantitative determination of senecionine (SEN) in the most frequently contaminated food sources. SEN was immobilized on a pencil graphite electrode surface by the passive adsorption technique. Differential pulse voltammetry (DPV) was used to evaluate the oxidation signal of SEN, which was observed to be around +0.95 V. The oxidation signal was specific to the SEN in the sample, and the current value was proportional to its concentration. The selectivity of our assay was also tested in the presence of other similar PAs such as intermedine, lycopsamine, and heliotrine. The detection limit is calculated by developed assay and found to be 5.45 µg/mL, which is an acceptable concentration value of SEN occurring at toxic levels for consumers. As an application of the developed sensor in food products, the electrochemical detection of SEN was successfully performed in flour and herbal tea products.Photodetectors are the essential building blocks of a wide range of optical systems. Typical photodetectors only convert the intensity of light electrical output signals, leaving other electromagnetic parameters, such as the frequencies, phases, and polarization states unresolved. Metasurfaces are arrays of subwavelength structures that can manipulate the amplitude, phase, frequency, and polarization state of light. When combined with photodetectors, metasurfaces can enhance the light-matter interaction at the pixel level and also enable the detector pixels to resolve more electromagnetic parameters. In this paper, we review recent research efforts in merging metasurfaces with photodetectors towards improved detection performances and advanced detection schemes. The impacts of merging metasurfaces with photodetectors, on the architecture of optical systems, and potential applications are also discussed.A spatially periodic voltage was used to create a dielectrophoresis induced periodic micro wrinkle deformation on the surface of a liquid film. Optical Coherence Tomography provided the equilibrium wrinkle profile at submicron accuracy. find more The dynamic wrinkle amplitude was derived from optical diffraction analysis during sub-millisecond wrinkle formation and decay, after abruptly increasing or reducing the voltage, respectively. The decay time constant closely followed the film thickness dependence expected for surface tension driven viscous levelling. Modelling of the system using numerical solution of the Stokes flow equations with electrostatic forcing predicted that wrinkle formation was faster than decay, in accord with observations.