Mcintyreebbesen1569
Furthermore, the mineralization efficiency (ΔCOD/ΔO3 = 0.84 mg/mg) and electrical energy per mass (EEM = 4.7 kW h/kg) were calculated and these results indicated a promising future for the MCO-UV process. Developing efficient sensing materials with super sensitivity and selectivity is imperative to fabricate high-performance gas sensors for satisfying future needs. Herein, we report the preparation of ultrathin nanosheet-assembled 3D hierarchical ZnO/In2O3 heterostructures for the sensitive and selective detection of ethanol by sintering the 3D hierarchical Zn/In glycerolate precursors consisting of ultrathin nanosheets synthesized through a facile solvothermal method. The obtained ZnO/In2O3 heterostructures were carefully characterized by XRD, SEM, HRTEM, BET and XPS. The results showed that the 20%ZnO/In2O3 heterostructure is built up by many ultrathin nanosheets composed of intimately connected ZnO and In2O3 nanoparticles and have a specific surface area as high as 137.1 m2 g-1. Because of the unique hierarchical structure, abundant mesoporous and formation of ZnO-In2O3 n-n heterojunctions, the 20%ZnO/In2O3 heterostructure based sensor was ultra-sensitive to ethanol gas at 240 °C and exhibited a response as high as 170 toward 50 ppm of ethanol, which is about 3.3 times higher than that of pure In2O3 based sensor. Moreover, the sensor based on 20%ZnO/In2O3 heterostructure has virtues of excellent selectivity, good long-term stability and moderate response and recovery speed (35/46 s) toward ethanol. Therefore, the ultrathin nanosheet-assembled 3D hierarchical heterostructures are promising materials for fabricating high-performance gas sensors. Soil cadmium (Cd) accumulation presents risks to crop safety and productivity. However, through an exogenous application of abscisic acid (ABA), its accumulation in plants can be reduced and its toxicity mitigated, thereby providing an alternative strategy to counteract Cd contamination of arable soil. In the present study, we demonstrated that exogenous ABA application alleviates Cd-induced growth inhibition and photosynthetic damage in wild-type (Col-0) Arabidopsis plants. However, these positive effects were weakened in the ABA-importing transporter (AIT1)-deficient mutant (ait1). Through further analysis, we found that upon ABA application, the decrease in Cd level significantly differed among ait1, Col-0, and the two AIT1-overexpressing transgenic plants (AIT1ox-1 and AIT1ox-2), suggesting that AIT1 mediates the Cd-reducing effects of ABA. ABA application also inhibited the expression of IRT1, ZIP1, ZIP4, and Nramp1 in Col-0 plants subjected to Cd stress. However, significant differences among the genotypes (ait1, Col-0 and AIT1ox) were only observed in terms of IRT1 expression. Overall, our findings suggest that the suppression of Cd accumulation and restoration of plant growth by exogenous ABA require the ABA-importing activity of AIT1 to inhibit IRT1 expression. The metabolic process and toxicity mechanism of dietary inorganic arsenic (iAs) in freshwater fish remain unclear to date. The present study conducted two iAs [arsenate (As(V)) and arsenite (As(III))] dietary exposures in freshwater fish crucian carp (Carassius auratus). The fish were fed on As supplemented artificial diets at nominal concentrations of 50 and 100 μg As(III) or As(V) g-1 (dry weight) for 10 d and 20 d. We found that the liver, kidney, spleen, and intestine of fish accumulated more As in As(V) feeding group than that in As(III), while the total As levels in muscle were similar between As(V) and As(III) group at the end of exposure. Reduction of As(V) to As(III) and oxidation of As(III) to As(V) occurred in fish fed with As(V) and As(III), respectively, indicating that toxicity of iAs was likely elevated or reduced when iAs was absorbed by fish before entering into human body through diet. Biomethylation to monomethylarsonic acid and dimethylarsinic acid and transformation to arsenocholine and arsenobetaine were also found in the fish. The linear regression analysis showed a positive correlation between secondary methylation index and the malondialdehyde content in tissues, highlighting the vital role of arsenic dimethylation in the oxidative damages in fish. The nano zero-valent iron sludge-based biochar (nZVI-SBC) was prepared in this study to eliminate Sb(III) from aqueous solutions, which was characterized by BET, SEM, XRD, TEM, FTIR, XPS. Our results proved that the incorporated nZVI on SBC matrix could significantly enhance eliminating Sb(III), and the max-adsorption capacity (160.40 mg g-1) can be achieved at pH = 4.8 ± 0.2 and temperature of 298 K. The effect of co-existing anions and natural organic matters on the Sb(III) adsorption efficiencies were systematically investigated. The surface complexation is the possible adsorption mechanisms by FTIR and XPS. Furthermore, mechanistic investigation revealed that •OH and hydroquinone radical (H-SQ•-) could be the primary oxidants for the transformation of Sb(III) under oxic conditions, while 9,10-phenanthrene quinone radical (P-SQ•-) were responsible under anoxic conditions. this website Thus, the enhanced elimination of Sb(III) from aqueous solution was ascribed to the combined adsorption and oxidation. The potential engineering application of nZVI-SBC can be proved through three actual water matrix experiments, including lake water, river water and acid mine drainage. Our present findings proved that nZVI-SBC could be a potential adsorbent, given the excellent performance in the adsorption processes, as well as the toxicity alleviating ability and economic advantages, especially under sub-surface water. V.Developing advanced treatment methods to minimize the release of emerging contaminants to natural water has become a matter of considerable interest. Sono-Fenton process was investigated to degrade bisphenol A (BPA) and sulfadiazine (SDZ). The H2O2 generated in situ was used as the exclusive source. Results showed that, the 400 kHz ultrasound is more efficient in creating homogeneous sono-Fenton than the 20 kHz apparatus due to the higher production of OH. Influence of Fe2+ was more remarkable on the degradation of hydrophilic SDZ, and its degradation kinetics was well fitted by two-stage kinetic model. However, the Fe2+ and H2O2 were unproductively wasted, which could not be improved by changing the dosing modes of Fe2+. The presence of P25 under visible light irradiation could significantly accelerate SDZ degradation at small amount of iron precursors, mainly via promoting the Fe2+/Fe3+ cycling by the photoelectrons. Moreover, SDZ degradation in sono-Fenton process was significantly inhibited at pH > 7, but the inhibition was very weak in P25-assisted sono-Fenton process.