Mcculloughlynggaard3046
Plants have developed multilayered molecular defense strategies to combat pathogens. These defense layers have been predominantly identified and characterized in incompatible interactions, in which the plant immune system induces a rapid and efficient defense. Nevertheless, due to the constant evolutionary pressure between plants and pathogens for dominance, it is conceptually accepted that several mechanisms of plant defense may be hidden by the co-evolving immune-suppressing functions from pathogens. Recent studies focusing on begomovirus-host interactions have provided an in-depth view of how suppressed plant antiviral mechanisms can offer a more dynamic view of evolving pressures in the immune system also shared with nonviral pathogens. The emerging theme of crosstalk between host antiviral defenses and antibacterial immunity is also discussed. This interplay between immune responses allows bacteria and viruses to activate immunity against pathogens from a different kingdom, hence preventing multiple infections presumably to avoid competition.Particulate matter (PM) air pollution is becoming more and more serious and dangerous to public health, especially in developing countries where industrialization is accelerating. The use of electrospun membrane-based materials for air filtration is a widespread and effective way to help individuals avoid air pollution. However, most electrospun membrane preparation processes require the use of organic solvents, resulting in secondary environmental pollution. In this study, an environmentally friendly polyvinyl alcohol (PVA) - tannic acid (TA) composite nanofiber membrane filter was prepared by the green electrospinning and the physical cross-linking method. The filtration efficiency of the membrane filter for PM1.0 reached 99.5%, and the pressure drop was only 35 Pa. U0126 In addition, due to the existence of intermolecular hydrogen bond between PVA and TA, the mechanical properties of the nanofiber membrane were improved to meet the requirements of practical application of the filter. Therefore, the PVA-TA composite nanofiber membrane is expected to provide a solution for the development of efficient and environmentally friendly air filter.Phosphate is a primary plant nutrient, serving integral role in environmental stability. Excessive phosphate in water causes eutrophication; hence, phosphate ions need to be harvested from soil nutrient levels and water and used efficiently. Fe-Mg (12) layered double hydroxides (LDH) were chemically co-precipitated and widely dispersed on a cheap, commercial Douglas fir biochar (695 m2/g surface area and 0.26 cm3/g pore volume) byproduct from syn gas production. This hybrid multiphase LDH dispersed on biochar (LDHBC) robustly adsorbed (~5h equilibrium) phosphate from aqueous solutions in exceptional sorption capacities and no pH dependence between pH 1-11. High phosphate Langmuir sorption capacities were found for both LDH (154 to 241 mg/g) and LDH-modified biochar (117 to 1589 mg/g). LDHBC was able to provide excellent sorption performance in the presence of nine competitive anion contaminants (CO32-, AsO43-, SeO42-, NO3-, Cr2O72-, Cl-, F-, SO42-, and MoO42-) and also upon remediating natural eutrophic water samples. Regeneration was demonstrated by stripping with aqueous 1 M NaOH. No dramatic performance drop was observed over 3 sorption-stripping cycles for low concentrations (5 ppm). The adsorbents and phosphate-laden adsorbents were characterized using Elemental analysis, BET, PZC, TGA, DSC, XRD, SEM, TEM, and XPS. The primary sorption mechanism is ion-exchange from low to moderate concentrations (10-500 ppm). Chemisorption and stoichiometric phosphate compound formation were also considered at higher phosphate concentrations (>500 ppm) and at 40 °C. This work advances the state of the art for environmentally friendly phosphate reclamation. These phosphate-laden adsorbents also have potential to be used as a slow-release phosphate fertilizer.
Hydrogel-based sensors have attracted considerable attention due to potential opportunities in human health monitoring when both mechanical flexibility and sensing ability are required. Therefore, the integration of excellent mechanical properties, electrical conductivity and self-healing properties into hydrogels may improve the application range and durability of hydrogel-based sensors.
A novel composite hydrogel composed of polyaniline (PANI), polyacrylic acid (PAA) and 2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)-oxidized cellulose nanofibrils (TOCNFs) was designed. The viscoelastic, mechanical, conductive, self-healing and sensing properties of hydrogels were studied.
The TOCNF/PANI/PAA hydrogel exhibits a fracture strain of 982%, tensile strength of 74.98kPa and electrical conductivity of 3.95 S m
, as well as good mechanical and electrical self-healing properties within 6h at ambient temperature without applying any stimuli. Furthermore, owing to the high sensitivity of the TOCNF/PANI/PAA-0.6 hydrogel-based strain sensor (gauge factor, GF=8.0), the sensor can accurately and rapidly detect large-scale motion and subtle localized activity. The proposed composite hydrogel is as a promising material for use as soft wearable sensors for health monitoring and smart robotics applications.
The TOCNF/PANI/PAA hydrogel exhibits a fracture strain of 982%, tensile strength of 74.98 kPa and electrical conductivity of 3.95 S m-1, as well as good mechanical and electrical self-healing properties within 6 h at ambient temperature without applying any stimuli. Furthermore, owing to the high sensitivity of the TOCNF/PANI/PAA-0.6 hydrogel-based strain sensor (gauge factor, GF = 8.0), the sensor can accurately and rapidly detect large-scale motion and subtle localized activity. The proposed composite hydrogel is as a promising material for use as soft wearable sensors for health monitoring and smart robotics applications.
Droplets can absorb into permeable substrates due to capillarity. It is hypothesized that the contact line dynamics influence this process and that an unpinned contact line results in slower absorption than a pinned contact line, since the contact area between the droplet and the substrate will decrease over time for the former. Furthermore, it is expected that surfactants can be used to accelerate the absorption.
Lubrication theory is employed to model the droplet and Darcy's law is combined with the conservation law of mass to describe the absorption dynamics. For the surfactant transport, several convection-diffusion-adsorption equations are solved.
It is found that moving contact lines result in a parabola-shaped wetted area and a slower absorption and a deeper penetration depth than pinned contact lines. The evolution of the penetration depth was quantitatively validated by comparison with two experimental studies from literature. Surfactants were shown to accelerate the absorption process, but only if their adsorption kinetics are slow compared to the absorption.