Mcclanahansherwood0231

Z Iurium Wiki

To explore the impact of groundwater hydrodynamics on water quality, a cost-effective geospatial model was developed using geographic information system (GIS) technology and the Dupuit assumption. Meanwhile, the groundwater quality in the Dagu River Basin was evaluated based on the water quality index (WQI) and multivariate statistical analyses. In April (dry season) and September (rainy season) 2017, the groundwater level was automatically monitored from 115 wells, and the water quality including 21 hydrochemical parameters was sampled from 37 wells. Results reveal that the WQI values varied from 35.01 to 64.74, with mean values of 51.89 and 47.87 in the rainy and dry seasons. Approximately 80% of the samples exhibited moderate water quality, with no significant difference between the rainy and dry seasons. Nitrate pollution and the integrated water quality in the central and northern regions were generally worse than that in the southern region. The Darcy velocity in the central and northern regions was relatively high with a maximum rate of 0.56 m/d, compared with the southern region. This correlation illustrates the effect of groundwater hydrodynamics on quality. The sowing of greater chemical fertilizers combined with faster groundwater movement is likely responsible for the large-scale nitrate pollution in the central and northern regions. Results also proved the accuracy of the geospatial model with a valid uncertainty. The geospatial model provides a valuable alternative for the spatial analysis of the effect of groundwater hydrodynamics on water quality.Aquatic plants litters from constructed wetlands might become pollutants without proper treatment. Due to its high carbon and low nitrogen contained, Iris pseudacorus litters have potential to be used as carbon source to enhance denitrification process in advanced treatments of secondary effluent from wastewater treatment plants. This study investigated the characteristics of carbon release form Iris pseudacorus litters and its performance on enhancement of nitrogen removal. The batch experiment showed that the organic carbon release process can be simulated by combining dissolution and hydrolysis process, and it was found that dissolved organic matters mainly consisted of 60% sugar and 35% humic acid-like compounds from the neutral detergent solution and hemicellulose of litters. The long-term operation of lab-scale constructed wetlands revealed a high nitrogen removal of 78.81-90.39% in treating the synthetic wastewater treatment plants effluent with the equivalent dosage of 25-150 g litters m-2 d-1. Furthermore, it is possible to establish an Iris pseudacorus self-consumed constructed wetland to reuse all of the litters produced during the operation. These findings can contribute to the understanding of the dynamics of carbon release from Iris pseudacorus litters and recycled utilization of plant biomass in the constructed wetlands.Ethidium bromide (3,8-diamino-6-phenyl-5-ethylphenanthridinium bromide, EtBr) is a carcinogenic compound widely used for staining nucleic acids that is difficult to treat. In this study, magnetic nanocatalysts (MNCs) were synthesized for the heterogeneous Fenton-like degradation of EtBr. The initial pH, MNC content, and H2O2 concentration were the key factors affecting the EtBr degradation performance and dynamics. An EtBr removal efficiency of 98.97% was achieved within 4 h under optimal conditions (initial pH, 3.0; MNC content, 1 g/L; H2O2 concentration, 50 mM), and the degradation followed the ring-open pathway with (2E,4Z,8E)-3-amino-N-ethyl-7,9-dihydroxynona-2,4,8-trienamide as an intermediate, as determined by liquid chromatography and mass spectrometry (LC/MS). Unexpected and satisfactory Fenton-like oxidation of EtBr occurred under basic conditions, which was explained by a novel denitration pathway with 2-[nitro(phenyl)methyl]-(1,1'-biphenyl)-4,4'-diamine as an intermediate. find more The MNCs retained 62.17% of their degradation efficiency after five consecutive reaction and harvest cycles. Our work elucidated the mechanisms and pathways of EtBr removal in a Fenton-like reaction using MNCs, and comprehensively discussed the optimal reaction conditions and its potential for re-use.Nitrogen and heavy metals can co-occur in various industrial wastewaters such as coke-oven wastewater. Removal of these contaminants is important, but cost-efficient removal technology is limited. In this study, we examined the usefulness of nitrate-dependent ferrous iron oxidation (NDFO) for the simultaneous removal of nitrate and heavy metals (iron and zinc), by using an NDFO strain Pseudogulbenkiania sp. NH8B. Based on the batch culture assays, nitrate, Fe, and Zn were successfully removed from a basal medium as well as coke-oven wastewater containing 5 mM nitrate, 10 mM Fe(II), and 10 mg/L Zn. Zinc in the water was most likely co-precipitated with Fe(III) oxides produced during the NDFO reaction. Simultaneous removal of nitrate, Fe, and Zn was also achieved in a continuous-flow reactor fed with a basal medium containing 10 mM nitrate, 5 mM Fe(II), 4 mM acetate, and 10 mg/L Zn. However, when the reactor is fed with coke-oven wastewater supplemented with 10 mM nitrate, 5 mM Fe(II), 4 mM acetate, and 10 mg/L ZnCl2, the reactor performance significantly decreased, most likely due to the inhibition of bacterial growth by thiocyanate or organic contaminants present in the coke-oven wastewater. Use of mixed culture of NDFO bacteria and thiocyanate/organic-degrading denitrifiers should help improve the reactor performance.The effect of oxidation degree of graphene oxides (GO) on their removal from wastewater via froth flotation was studied in this work. Four types of GO samples with different oxidation degrees were synthesized and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), atomic force spectroscopy (AFM) et al. The effects of cetyl trimethyl ammonium bromide (CTAB) concentration, pH, stirring time on the removal of GO by froth flotation had been discussed. It was found that the addition of CTAB could improve surface hydrophobicity of GO, endowing GO to be easily separated by froth flotation. The removal was dependent on CTAB dosage, pH and stirring time. Moreover, the removal first increased and then decreased with the increasing oxidation degree of GO, and less kinetic energy input was needed to overcome the energy barrier between GO flocs with the increase of oxidation degree. The removal mechanism was proven to be electrostatic attraction, and the different contents of oxgenous-containing functional groups in GOs with various oxidation degrees played a vital role in their removal via froth flotation.Recent trend to recover value-added products from wastewater calls for more effective pre-treatment technology. Conventional landfill leachate treatment is often complex and thus causes negative environmental impacts and financial burden. In order to facilitate downstream processing of leachate wastewater for production of energy or value-added products, it is pertinent to maximize leachate treatment performance by using simple yet effective technology that removes pollutants with minimum chemical added into the wastewater that could potentially affect downstream processing. Hence, the optimization of coagulation-flocculation leachate treatment using multivariate approach is crucial. Central composite design was applied to optimize operating parameters viz. Alum dosage, pH and mixing speed. Quadratic model indicated that the optimum COD removal of 54% is achieved with low alum dosage, pH and mixing speed of 750 mgL-1, 8.5 and 100 rpm, respectively. Optimization result showed that natural pH of the mature landfill leachate sample is optimum for alum coagulation process. Hence, the cost of pH adjustment could be reduced for industrial application by adopting optimized parameters. The inherent mechanism of pollutant removal was elucidated by FTIR peaks at 3853 cm-1 which indicated that hydrogen bonds play a major role in leachate removal by forming well aggregated flocs. This is concordance with SEM image that the floc was well aggregated with the porous linkages and amorphous surface structure. The optimization of leachate treatment has been achieved by minimizing the usage of alum under optimized condition.Mercury (Hg) is a contaminant that is impacting ecosystems worldwide. Its toxicity is threatening wildlife and human populations, leading to the necessity of identifying the most affected ecosystems. Therefore, it is essential to identify pertinent bioindicator organisms to monitor Hg contamination. In this study, we determined the stable carbon (δ13C) and nitrogen (δ15N) isotope ratios in the red blood cells (RBCs), and the total Hg concentration in total blood of 72 Melanosuchus niger in French Guiana. The goals of our study were to assess the level of Hg contamination in total blood of Black caimans and to further investigate the influence of individual traits (i.e., sex, size/age, diet) on Hg concentrations. Mercury concentration in total blood of Black caimans ranged from 0.572 to 3.408 μg g-1 dw (mean ± SD is 1.284 ± 0.672 μg g-1 dw) and was positively correlated to individual body size and trophic position (δ15N). We did not find any sexual or seasonal effects on Hg concentrations in the blood. The use of blood of M. niger is relevant to determine Hg concentrations within the population and suggests that this species can be used as a bioindicator for environmental contamination. In addition, our results emphasize trophic position as a major source of Hg variation and further suggest that it is essential to take trophic position (δ15N) into account for future studies.Cadmium (Cd) is a non-essential highly toxic metal and its presence in the environment has been a concern over the years. On the present study we adopt the spiked water exposure scenario to study early Cd contamination across five generations of the model organism Chironomus riparius. Animals were, at the beginning of each generation, submitted to 0, 1, 3.2, 10, 32 and 100 μg/L of Cd. Classical endpoints like total emergence, EmT50, fertility and the integrative fitness measure, population growth rate (PGR), were calculated at each generation. Results could demonstrate that exposure to brief and low Cd concentrations can affect all the measured endpoints and, therefore, initial Cd pollution in previously unpolluted sites can be detected after just five consecutive generations. Importantly, at 100 μg/L of Cd fertility was greatly impaired after three generations. Also, PGR calculation is a sensitive tool for monitoring early pollution of Cd. Yet, no adaptation to Cd over five generations could be observed on the present experimental setup.Phthalate esters (PAEs) are a class of endocrine disruptors that are produced and used extensively in China. Given its presence in various products, a great quantity of PAEs flows into different aquatic systems each year. Hence, it is important to study the pollution levels and ecological risk of PAEs. This study investigated the distribution and seasonal variation of six priority PAEs in the surface water of Poyang Lake, the largest freshwater lake in China. In the wet season, the mean concentration of the total PAEs was 0.544 ± 0.173 μg/L, while the dry season concentration (1.003 ± 0.451 μg/L) nearly doubled. The most abundant PAE congeners were di-n-butyl phthalate (DBP), followed by bis (2-ethylhexyl) phthalate (DEHP). To evaluate the ecological risks in Poyang Lake, the predicted no-effect concentrations (PNECs) of four PAEs based on non-lethal effects were derived. For diethyl phthalate (DEP), butyl benzyl phthalate (BBP), DBP, and DEHP, the PNECs were 31.6, 3.30, 2.31, and 0.0210 μg/L, respectively. The tiered ecological risk assessment showed that DEP and BBP posed no risk in Poyang Lake.

Autoři článku: Mcclanahansherwood0231 (Dolan Mays)