Mccabehernandez5350
At all angles, lens power decreased significantly with age. Lens power increased with increasing delivery angle for all lenses, corresponding to a shift toward myopic peripheral defocus. There was a statistically significant decrease in the lens peripheral defocus with age.
The isolated human lens power increases with increasing field angle. The lens relative peripheral defocus decreases with age, which may contribute to the age-related changes of ocular peripheral defocus during refractive development.
The isolated human lens power increases with increasing field angle. The lens relative peripheral defocus decreases with age, which may contribute to the age-related changes of ocular peripheral defocus during refractive development.The sodium/potassium-ATPase (NKA) is the enzyme that establishes gradients of sodium and potassium across the plasma membrane. NKA activity is tightly regulated for different physiological contexts through interactions with single-span transmembrane peptides, the FXYD proteins. This diverse family of regulators has in common a domain containing a Phe-X-Tyr-Asp (FXYD) motif, two conserved glycines, and one serine residue. In humans, there are seven tissue-specific FXYD proteins that differentially modulate NKA kinetics as appropriate for each system, providing dynamic responsiveness to changing physiological conditions. Our understanding of how FXYD proteins contribute to homeostasis has benefitted from recent advances described in this review biochemical and biophysical studies have provided insight into regulatory mechanisms, genetic models have uncovered remarkable complexity of FXYD function in integrated physiological systems, new posttranslational modifications have been identified, high-resolution structural studies have revealed new details of the regulatory interaction with NKA, and new clinical correlations have been uncovered. In this review, we address the structural determinants of diverse FXYD functions and the special roles of FXYDs in various physiological systems. We also discuss the possible roles of FXYDs in protein trafficking and regulation of non-NKA targets.
Alopecia areata (AA) is a complex immune-mediated disorder that causes nonscarring hair loss. Previous reports have documented preferential targeting of pigmented hair follicles with sparing of gray, nonpigmented hair follicles in alopecia lesions. Thus, immune targeting of melanogenesis-associated proteins in melanocytes and keratinocytes represents a potential mechanism for the inflammation that targets anagen hairs in alopecia areata.
To investigate the association of alopecia areata with hair color among White residents of the UK.
This matched, case-control study conducted in October 2020 used a large prospectively acquired cohort and included data that were collected from the UK Biobank, a large-scale prospective resource designed to study phenotypic and genotypic determinants in adults. A total of 502 510 UK Biobank participants were reviewed for inclusion. Among these individuals, 1673 cases of alopecia areata with reported hair color were captured and matched by age and sex to 6692 controls with. Our results support a previously proposed model of alopecia areata in which immunity is directed against melanogenesis-associated proteins in the anagen hair follicles. However, further study is needed to more precisely understand the immunopathogenic association between alopecia areata and hair color.
The findings of this matched case-control study seem to indicate that alopecia areata is modulated by natural hair color, preferentially targeting darker hair. Our results support a previously proposed model of alopecia areata in which immunity is directed against melanogenesis-associated proteins in the anagen hair follicles. However, further study is needed to more precisely understand the immunopathogenic association between alopecia areata and hair color.Gwendalyn Randolph shares her observations and ideas for how institutions can partner with women to support their careers in STEM.Anastacia Awad is the Head of Diversity and Inclusion (D&I) globally for the Novartis Institutes for BioMedical Research, which is the research engine of Novartis. She completed her PhD in genetics and molecular biology at the University of North Carolina at Chapel Hill, followed by a postdoc with Alan Hall at Memorial Sloan Kettering Cancer Center. I chatted with Anastacia about her career in science and her journey from the bench to industry.Shape perception varies depending on many factors. FDI-6 chemical structure For example, presenting a stimulus in the periphery often yields a different appearance compared with its foveal presentation. However, how exactly shape appearance is altered under different conditions remains elusive. One reason for this is that studies typically measure identification performance, leaving details about target appearance unknown. The lack of appearance-based methods and general challenges to quantify appearance complicate the investigation of shape appearance. Here, we introduce Geometrically Restricted Image Descriptors (GRIDs), a method to investigate the appearance of shapes. Stimuli in the GRID paradigm are shapes consisting of distinct line elements placed on a grid by connecting grid nodes. Each line is treated as a discrete target. Observers are asked to capture target appearance by placing lines on a freely viewed response grid. We used GRIDs to investigate the appearance of letters and letter-like shapes. Targets were presented at 10° eccentricity in the right visual field. Gaze-contingent stimulus presentation was used to prevent eye movements to the target. The data were analyzed by quantifying the differences between targets and response in regard to overall accuracy, element discriminability, and several distinct error types. Our results show how shape appearance can be captured by GRIDs, and how a fine-grained analysis of stimulus parts provides quantifications of appearance typically not available in standard measures of performance. We propose that GRIDs are an effective tool to investigate the appearance of shapes.