Mathiasenlynge3654

Z Iurium Wiki

Moreover, soil warming significantly decreased DOC concentration but significantly increased MBC concentration. The ratios of C decomposition potential to N mineralization potential, decomposition potential to SOC, and N mineralization to TN were not affected by soil warming. There were significant seasonal and annual variations in SOC, C decomposition and N mineralization potentials, soil DOC and MBC under each temperature treatments. Our study implied that soil warming can decrease soil C and N stocks in paddy ecosystem probably via stimulating microbial activities and accelerating the depletion of DOC. This study further highlights the importance of long-term in situ observation of C and N dynamics and their availabilities in rice paddy ecosystems under increasing global warming scenarios.Vast reservoirs of antibiotic resistance genes (ARG) are discharged into the environment via pig manure. We used metagenomic analysis to follow the distribution and shifts of ARGs and their bacterial hosts along wastewater treatment in three large pig farms. The predominating ARGs potentially encoded resistance to tetracycline (28.13%), aminoglycosides (23.64%), macrolide-lincosamide-streptogramin (MLS) (12.17%), sulfonamides (11.53%), multidrug (8.74%) and chloramphenicol (6.18%). Alisertib molecular weight The total relative ARG abundance increased along the treatment pathway prior to anaerobic digestion that had a similar degradative capacity for different ARGs and these ARGs were reduced by about 25% after digestion, but ARGs enriched erratically in manured soils. Distinctive ARG distribution patterns were found according to the three sample locations; feces, soil and wastewater and the differences were primarily due to the tetracycline ARGs (feces > wastewater > soil), sulfonamide ARGs (soil > wastewater > feces) and MLS ARGs (feces > wastewater > soil). Metagenomic assembly-based host analyses indicated the Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes were primary ARG carriers. The Streptococcaceae increased the abundance of multidrug, MLS and aminoglycoside ARGs in feces; Moraxellaceae were the primary contributors to the high abundance of multidrug ARGs in wastewater; the Comamonadaceae led to the higher abundance of bacA in wastewater and soil than feces. We found a high level of heterogeneity for both ARGs and ARG-hosts in the wastewater treatment system and in the agricultural soils for these pig farms.It is becoming increasingly clear that plants can affect iron (Fe) dynamics in tidal wetland soils, but whether this is rhizosphere effect-dependent remains unclear. To assess rhizosphere effects on soil Fe cycling, in-situ rhizosphere and bulk soil samples (0-60-cm) were collected from a tidal wetland across plant growth stages (regreening, shooting, and senescence). Changes in Fe fractions, the abundance of Fe-oxidizing/reducing bacteria (16S rRNA gene), root morphology traits, and soil and porewater geochemistry were examined. Overall, the rhizosphere effect decreased soil pH but increased the concentrations of dissolved organic carbon (DOC), porewater Fe2+, and bicarbonates (HCO3-). Both Fe-oxidizing and Fe-reducing bacteria were more enriched in the rhizosphere than those in the bulk soil. The rhizosphere effect increased the concentrations of amorphous and crystalline Fe(III), and also enhanced the proportion of amorphous Fe(III). The rhizosphere had higher concentrations of non-sulfidic ferrous iron [Fe(II)] but lower concentrations of ferrous sulfide (FeS) and pyrites (FeS2) than those in bulk soils, suggesting that the rhizosphere effect favors microbial Fe(III) reduction but suppresses microbial sulfate reduction. Moreover, the rhizosphere amorphous Fe(III) levels changed following the patterns of root porosity, which attained peak values at the root tips. The abundance of Fe-reducing bacteria was controlled by both DOC and amorphous Fe(III) concentrations, which were relatively higher during the regreening and shooting stages than those during the senescence stage. Taken together, our findings highlight that the rhizosphere effect transfer Fe from the bulk soil to the rhizosphere and especially redirects it from FeS associations to microbially-mediated Fe redox cycling. This rapid Fe redox cycling could be responsible for buffering soils and organisms from sulfide accumulation and stimulate C mineralization in the tidal wetland ecosystem.Aerobic granular sludge (AGS) exhibited an excellent removal efficiency and a high tolerance in the treatment of antibiotics wastewater. Extracellular polymeric substances (EPS) of AGS with abundant binding sites might serve as the first barrier to prevent the direct contact of antibiotics and cells, thereby keeping the stability of AGS. In this study, the investigations in the fluorescence properties and the molecular weight of AGS-EPS after interaction with tetracycline (TC) were combined to reveal the resistance mechanism of AGS-EPS against TC. The two-dimensional correlation spectroscopy (2D-COS) was utilized to analyze the interaction priority of the AGS-EPS components with TC. Results showed that TC interacted with proteins and humic acid in AGS-EPS by forming a complex through hydrogen bond and van der Waals force. Compared with humic acid, TC could preferentially interact with proteins and form more stable complexes. Moreover, the components with the larger molecular weight in AGS-EPS interact with TC prior to which with smaller molecular weight. Significantly, TC exhibited the potential of binding with the divalent cation of AGS-EPS and caused the conformation changes of the protein. Therefore, AGS-EPS could resist the TC at a certain concentration range by trapping antibiotics, while over-loaded TC would cause the instability of AGS due to the limited interaction site of AGS-EPS and the destructive effect of antibiotics on AGS-EPS. This study provided a theoretical basis for understanding the interaction mechanism between antibiotics and AGS-EPS and offered a reference for AGS to maintain the stability of granules under the threat of antibiotics.The toxicology of microplastics in combination with other pollutants has attracted widespread attention. In this study, zebrafish were exposed to 3 mg/L polystyrene microplastic, 0.2 mg/L phenanthrene, and a combination of both. Zebrafish microplastic uptake, phenanthrene accumulation, antioxidant-associated enzyme activity and related gene expression, immune-associated gene expression, and the gut microflora were measured after 12 and 24 days of exposure. Phenanthrene and microplastic accumulation increased with exposure time and was also greater in the combined exposure group than in the single exposure group. Combined analysis of antioxidant enzyme activity and immune and antioxidant-related genes shows that exposure alone causes oxidative stress in zebrafish, ultimately increasing immunity and the expression of oxidative stress genes, while combined exposure exacerbates these changes. Fusobacteria decreased and Proteobacteria and Bacteroidetes increased in the three exposure groups of gut microorganisms. Overall, our study demonstrates that microplastics enhance the toxicity of phenanthrene and that the two have a synergistic effect.

Autoři článku: Mathiasenlynge3654 (Vang Aggerholm)