Mahlerolesen3348
The main endocrine cell types in pancreatic islets are alpha, beta, and delta cells. Although these cell types have distinct roles in the regulation of glucose homeostasis, inadequate purification methods preclude the study of cell type-specific effects. We developed a reliable approach that enables simultaneous sorting of live alpha, beta, and delta cells from mouse islets for downstream analyses.
We developed an antibody panel against cell surface antigens to enable isolation of highly purified endocrine subsets from mouse islets based on the specific differential expression of CD71 on beta cells and CD24 on delta cells. We rigorously demonstrated the reliability and validity of our approach using bulk and single cell qPCR, immunocytochemistry, reporter mice, and transcriptomics.
Pancreatic alpha, beta, and delta cells can be separated based on beta cell-specific CD71 surface expression and high expression of CD24 on delta cells. We applied our new sorting strategy to demonstrate that CD71, which is the transferrin receptor mediating the uptake of transferrin-bound iron, is upregulated in beta cells during early postnatal weeks. We found that beta cells express higher levels of several other genes implicated in iron metabolism and iron deprivation significantly impaired beta cell function. In human beta cells, CD71 is similarly required for iron uptake and CD71 surface expression is regulated in a glucose-dependent manner.
This study provides a novel and efficient purification method for murine alpha, beta, and delta cells, identifies for the first time CD71 as a postnatal beta cell-specific marker, and demonstrates a central role of iron metabolism in beta cell function.
This study provides a novel and efficient purification method for murine alpha, beta, and delta cells, identifies for the first time CD71 as a postnatal beta cell-specific marker, and demonstrates a central role of iron metabolism in beta cell function.Edwardsiella piscicida causes edwardsiellosis in a variety of fish species and leads to tremendous economic losses in the global aquaculture industries. Selleckchem CPI-455 Thus, effective and safe prevention and control of this bacterium are urgently needed to combat the related infections. Live attenuated vaccines (LAVs) effectively prevent infectious diseases. However, most of the existing E. piscicida LAVs are based on the deletion of genes encoding the translocon components of the type III secretion system (T3SS), the core virulence system, which is the most prominent protective bacterial antigen with the strongest immunogenicity. In this study, we systematically deleted all of the 9 established T3SS effectors in E. piscicida (aka 9Δ) and the rpoS gene encoding the alternative sigma factor, the esrB repressor (10Δ), then we overexpressed esrB and T3SS in E. piscicida to obtain the recombinant strain 10Δ/esrBOE. The modified strains 10Δ and 10Δ/esrBOE exhibited severe attenuation and in vivo colonization defects. Additionally, vaccination by intraperitoneal injection with 10Δ and 10Δ/esrBOE could significantly upregulate the expression of the antigen recognition related gene (TLR5) and the adaptive immune response-related gene (MHC II) in the spleen/kidney of turbot fish, and it also enhanced the hosts' serum bactericidal capacity. Finally, vaccination with 10Δ/esrBOE led to increased immune protection against the challenge of wild type E. piscicida EIB202 in turbot fish. Collectively, these findings demonstrated that 10Δ/esrBOE was a novel LAV strain and therefore a potential novel strategy for the construction of LAVs against bacterial pathogens.
A great deal of valuable experience has been accumulated in the traditional Chinese medicine (TCM) system for the treatment of "Xiaoke" disease which is known as diabetes mellitus now. As the most-commonly used Chinese herb, licorice has been used in TCM for more than two thousand years. It is often used in combination with other herbs to treat metabolic disorders, especially diabetes mellitus.
To summarize the characteristics, mechanisms, and clinical use of licorice and its active components for treating diabetes mellitus.
PubMed, Web of Science, Research Gate, Science Direct, Google Scholar, and Academic Journals were used as information sources by the inclusion of the search terms 'diabetes', 'licorice', 'licorice extracts', 'flavonoids', 'triterpenoids', and their combinations, mainly from 2005 to 2019.
Licorice extracts, five flavonoids and three triterpenoids isolated from licorice possess great antidiabetic activities in vivo and in vitro. This was done by several mechanisms such as increasing the appetency and sensitivity of insulin receptor site to insulin, enhancing the use of glucose in different tissues and organs, clearing away the free radicals and resist peroxidation, correcting the metabolic disorder of lipid and protein, and improving microcirculation in the body. Multiple signaling pathways, including the PI3K/Akt, AMPK, AGE-RAGE, MAPK, NF-кB, and NLRP3 signaling pathways, are targets of the licorice compounds.
Licorice and its metabolites have a great therapeutic potential for the treatment of diabetes mellitus. However, a better understanding of their pharmacological mechanisms is needed for evaluating its efficacy and safety.
Licorice and its metabolites have a great therapeutic potential for the treatment of diabetes mellitus. However, a better understanding of their pharmacological mechanisms is needed for evaluating its efficacy and safety.
The subtribe Hyptidinae contains approximately 400 accepted species distributed in 19 genera (Hyptis, Eriope, Condea, Cantinoa, Mesosphaerum, Cyanocephalus, Hypenia, Hyptidendron, Oocephalus, Medusantha, Gymneia, Marsypianthes, Leptohyptis, Martianthus, Asterohyptis, Eplingiella, Physominthe, Eriopidion and Rhaphiodon). This is the Lamiaceae clade with the largest number of species in Brazil and high rates of endemism. Some species have been used in different parts of the world mainly as insecticides/pest repellents, wound healing and pain-relief agents, as well as for the treatment of respiratory and gastrointestinal disorders.
This review aims to discuss the current status concerning the taxonomy, ethnobotanical uses, phytochemistry and biological properties of species which compose the subtribe Hyptidinae.
The available information was collected from scientific databases (ScienceDirect, Pubmed, Web of Science, Scopus, Google Scholar, ChemSpider, SciFinder ACS Publications, Wiley Online Library), as well as other literature sources (e.