Macmillanmcculloch3786

Z Iurium Wiki

Bacteria have evolved diverse strategies to compete for a niche, including the type VI secretion system (T6SS), a contact-dependent killing mechanism. T6SSs are common in bacterial pathogens, commensals, and beneficial symbionts, where they affect the diversity and spatial structure of host-associated microbial communities. Although T6SS gene clusters are often located on genomic islands (GIs), which may be transferred as a unit, the regulatory strategies that promote gene expression once the T6SS genes are transferred into a new cell are not known. We used the squid symbiont, Vibrio fischeri, to identify essential regulatory factors that control expression of a strain-specific T6SS encoded on a GI. We found that a transcriptional reporter for this T6SS is active only in strains that contain the T6SS-encoding GI, suggesting the GI encodes at least one essential regulator. A transposon screen identified seven mutants that could not activate the reporter. These mutations mapped exclusively to three genes on theoting T6SS expression may involve sensing the energetic state of the cell. Such a mechanism would provide a direct link between T6SS activation and cellular energy levels, providing a "checkpoint" to ensure the cell has sufficient energy to build such a costly weapon. Because these regulatory factors are encoded within the T6SS gene cluster, they are predicted to move with the genetic element to activate T6SS expression in a new host cell.The Anti-feeding prophage (Afp) produced by the bacterium Serratia entomophila is the archetype, external contractile injection system (eCIS). Afp and its orthologues are characterized by three sheath proteins while contractile bacteriophages and pyocins encode only one. Using targeted mutagenesis, transmission electron microscopy (TEM) and pull-down studies, we interrogated the roles of the three sheath proteins (Afp2, Afp3 and Afp4) in Afp assembly, in particular, the interaction between the two sequence-related helical-sheath forming proteins Afp2 and Afp3 and their cross-talks with the tail termination sheath capping protein (Trp) Afp16 in the sheath maturation process. The expressed assemblies for afp2- mutant were mostly a mixture of isolated tail fibres, detached baseplates without tail fibres and sheath-less, inner tube baseplate complexes (TBC) of length similar to that in mature Afp, which were surrounded in many cases by fibrillar polymerized material. In the afp3- mutant, variable length TBC with Afp assembly. We find that Afp3, by virtue of its interaction with the tail terminating protein Afp16, regulates tube and sheath length while Afp2 is critical to proper sheath polymerisation and assembly of the baseplate. The resulting model for the Afp assembly will further guide in the manipulation of Afp and its related eCISs as nano delivery vehicles for pest control and phage therapy.The last two decades have seen numerous studies connecting physiological behaviors in Bacteroides-including polysaccharide degradation and capsule production-with elements of global regulation, but a complete model is still elusive. A new study by Adams et al. in this issue of the Journal of Bacteriology reveals another layer of regulation by describing a novel family of RNA-binding proteins (Rbps) in Bacteroides thetaiotaomicron that modify expression of genes involved in carbohydrate utilization and capsule expression, among others.Enterococcus faecalis is a gut commensal but transitions to a pathogenic state as a consequence of intestinal dysbiosis and/or the presence of indwelling medical devices causing a wide range of infections. One of the unique features of E. faecalis is its ability to display high level resistance to lysozyme, an important host defense of the innate immune response. Lysozyme resistance in E. faecalis is known to be mediated by the extracytoplasmic function (ECF) sigma factor, SigV. PgdA and RsiV expression is directly regulated by SigV, but pgdA and rsiV mutants display nominal changes in lysozyme resistance, suggesting that additional gene products in the SigV regulon contribute to lysozyme resistance. Using RNA-seq analysis, we compared the transcriptional profile of the parental strain to an isogenic sigV mutant and show that apart from sigV, only rsiV and pgdA expression was induced upon lysozyme exposure. The combined deletion mutant of both rsiV and pgdA rendered E. faecalis sensitive to lysozyme at a leve characterized as being responsible for the dramatic increase in lysozyme susceptibility displayed by a sigV mutant. Using RNA-seq, we have identified the SigV regulon to be comprised of two gene loci, sigV-rsiV and pgdA. Deletion of both rsiV and pgdA renders E. faecalis susceptible to lysozyme on par with a sigV mutant. We also demonstrate that overproduction of rsiV and pgdA contribute to lysozyme resistance in susceptible strains.Corynebacterium diphtheriae is the causative agent of a severe respiratory disease in humans. The bacterial systems required for infection are poorly understood, but the acquisition of metals such as manganese (Mn) is likely critical for host colonization. MntR is a Mn-dependent transcriptional regulator in C. diphtheriae that represses the expression of the mntABCD genes, which encode a putative ABC metal transporter. However, other targets of Mn and MntR regulation in C. diphtheriae have not been identified. In this study, we use comparisons between the gene expression profiles of wild-type C. diphtheriae strain 1737 grown without or with Mn supplementation and comparisons of gene expression between wild-type and an mntR deletion mutant to characterize the C. diphtheriae Mn and MntR regulon. MntR was observed to both repress and induce various target genes in a Mn-dependent manner. Genes induced by MntR include the Mn-superoxide dismutase, sodA, and the putative ABC transporter locus, iutABCD. DNA binding srole for the MntABCD transporter in manganese import using evidence from manganese and cadmium toxicity assays. Understanding the nutritional requirements of C. diphtheriae and the tools used to acquire essential metals will aid in the development of future vaccines.Begomoviruses are whitefly-transmitted viruses that infect many agricultural crops. Numerous reports exist on individual host plants harboring two or more begomoviruses. Mixed infection allows recombination events to occur among begomoviruses. However, very few studies have examined mixed infection of different isolates/variants/strains of a Begomovirus species in hosts. In this study, the frequency of mixed infection of tomato yellow leaf curl virus (TYLCV) variants in field-grown tomato was evaluated. At least 60% of symptomatic field samples were infected with more than one TYLCV variant. These variants differed by a few nucleotides and amino acids resembling a quasispecies. Subsequently, in the greenhouse, single and mixed infection of two TYLCV variants ("variant #2" and "variant #4") that shared 99.5% nucleotide identity and differed by a few amino acids was examined. Plant-virus variant-whitefly interactions including transmission of one and/or two variants, variants' concentrations, competition between variants in inoculated tomato plants, and whitefly acquisition of one and/or two variants were assessed. Whiteflies transmitted both variants to tomato plants at similar frequencies; however, the accumulation of variant #4 was greater than variant#2 in tomato plants. Despite differences in variants' accumulation in inoculated tomato plants, whiteflies acquired variant #2 and variant #4 at similar frequencies. Also, whiteflies acquired greater amounts of TYLCV from singly-infected plants than from mixed-infected plants. These results demonstrated that even highly similar TYLCV variants could differentially influence component (whitefly-variant-plant) interactions.Sjögren-Larsson syndrome (SLS) is an inherited neurocutaneous disorder whose causative gene encodes the fatty aldehyde dehydrogenase ALDH3A2. To date, the detailed molecular mechanism of the skin pathology of SLS has remained largely unclear. We generated double knockout (DKO) mice for Aldh3a2 and its homolog Aldh3b2 (a pseudogene in humans). These mice showed hyperkeratosis and reduced fatty aldehyde dehydrogenase activity and skin barrier function. check details The levels of ω-O-acylceramides (acylceramides), which are specialized ceramides essential for skin barrier function, in the epidermis of DKO mice were about 60% of those in wild type mice. In the DKO mice, levels of acylceramide precursors (ω-hydroxy ceramides and triglycerides) were increased, suggesting that the final step of acylceramide production was inhibited. A decrease in acylceramide levels was also observed in human immortalized keratinocytes lacking ALDH3A2. Differentiated keratinocytes prepared from the DKO mice exhibited impaired long-chain base metabolism. Based on these results, we propose that the long-chain-base-derived fatty aldehydes that accumulate in DKO mice and SLS patients attack and inhibit the enzyme involved in the final step of acylceramide. Our findings provide insight into the pathogenesis of the skin symptoms of SLS, i.e., decreased acylceramide production, and its molecular mechanism.Triple negative breast cancer (TNBC) is an aggressive histological subtype of breast cancer. It has been reported that that circRNA circ-ERBB2 (circBase ID hsa_circ_0007766) is mainly distributed in the cytoplasm of TNBC cells and promotes the proliferation and invasion of TNBC cells. This study aimed to explore the molecular mechanism of circ-ERBB2 regulating the progression of TNBC. Expression of circ-ERBB2 was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Loss-of-function experiments were performed to investigate the function of circ-ERBB2 in TNBC cells in vitro and in vivo. The regulatory mechanism of circ-ERBB2 was surveyed by bioinformatics analysis, dual-luciferase reporter and RNA immunoprecipitation (RIP) or RNA pull-down assays. We observed that Circ-ERBB2 was overexpressed in TNBC, and TNBC patients with high circ-ERBB2 expression had a poor prognosis. Functionally, circ-ERBB2 knockdown constrained TNBC growth in vivo and reduced Warburg effect, accelerated apoptosis, repressed proliferation, migration, and invasion of TNBC cell in vitro. Mechanically, circ-ERBB2 sponged miR-136-5p to elevate pyruvate dehydrogenase kinase 4 (PDK4) expression. In conclusion, circ-ERBB2 facilitated Warburg effect and malignancy of TNBC cells by the miR-136-5p/PDK4 pathway, at least in part. This study supported circ-ERBB2 as a prognostic indicator for TNBC.IntroductionResearch is increasingly demonstrating a range of benefits of practicing yoga, such as improved physical and mental health, social connectedness, and self-care. Mechanisms of action are less well understood, but may include both psychological and physiological changes. The aim of this study was to understand more about benefits and mechanisms of yoga practice, using qualitative data collected from a large-scale survey of yoga use in the United Kingdom. Methods The mixed methods, cross-sectional online survey collected data on yoga use and perceived benefits from 2434 U.K. yoga practitioners. The qualitative survey element used open-ended questions to gain "real life" data regarding practice and perceived benefits. Data were analyzed thematically and deductively. A practice-based model describing yoga practice, mechanisms, and benefits, based on the Khalsa logic model of yoga, was developed to explain the data. Findings Findings highlighted that a diverse range of yoga practices and nonspecific contextual factors related to practicing yoga, needed to be considered to understand how yoga was benefitting people.

Autoři článku: Macmillanmcculloch3786 (Craig Temple)