Macgregormeldgaard7164

Z Iurium Wiki

However, in the presence of ATP, the aptamer combined with ATP and shortened the distance between the split sequences, resulting in the taut state of the TDN and the formation of a G-quadruplex at the edge. After the addition of hemin, the differential pulse voltammograms (DPVs) were used to quantify ATP. The sensor revealed a dynamic response range from 0.1 nM to 1 μM, with a detection limit of 50 pM. In addition, the specificity and practicability in real samples were also verified, indicating its potential applications.As a fast, high-performance and cost-effective separation technique, capillary electrophoresis (CE) is applicable to the screening and diagnosis of diseases such as thalassemia. However, it is often not preferred due to its unrepeatable and/or irreproducible migration times. Herein, we propose a stable version of CE that uses migration charge density instead of the migration time to plot the electropherogram. The peak position is now independent of the applied voltage or current and the capillary geometry and is also insensitive to temperature. Its applicability was demonstrated in the quantitative analysis of human hemoglobin. On a laboratory-built device, with a running buffer simply consisting of 3.0 M acetic acid and 0.1% (w/v) hydroxyethyl cellulose, it allows a direct injection of whole blood samples and all the concerned globin chains, α, β, Aγ and Gγ can be well separated in 15 minutes. The resolution of α/β, β/Aγ, and Aγ/Gγ reached 4.4, 3.1 and 5.3, respectively. The intra- and inter-day precisions for the peak position based on the migration charge densities were below 0.6%. Its diagnostic applicability was validated in the analysis of several real blood samples from newborns, children and adults, and its capacity was demonstrated to screen and define the type of thalassemia.Herein, a solid-phase microextraction pencil lead fiber coated with a layer-by-layer graphenized graphite/graphene oxide/polyaniline nanocomposite (GG/GO/PANI) was fabricated by an in situ electrochemical technique for the trace analysis of organophosphorus pesticide residues in packed grape and apple juice and also fresh tomato samples. The effects of various parameters, including the type of desorption solvent, adsorption time, desorption time, pH, salt addition, and stirring rate, on the extraction efficiency of the studied pesticides were investigated and accordingly, these parameters were optimized. The proposed fiber demonstrated desirable linear ranges (0.01-300 μg L-1) with good correlation coefficients (R2 ≥ 0.996) as well as low limits of detection (0.003-0.03 μg L-1) for the studied pesticides. The relative standard deviations (n = 5) for the extraction of 50 μg L-1 of each analyte were less than 7 and 11.5% for inter and intra-day precisions, respectively. This fast, facile, and repeatable electrochemical fabrication method produced a porous and homogeneous coating. Reversine datasheet The proposed fiber demonstrated good extraction efficiency, high stability, and long life-time despite being low cost. The successful application of the proposed fiber for the trace determination of pesticides in complex food matrices was proven by the satisfactory relative recoveries of 80.7-116.5%.Advanced chemometric methods, such as fuzzy c-means (FCM), a fuzzy divisive hierarchical clustering algorithm (FDHC), and fuzzy divisive hierarchical associative-clustering (FDHAC), which offer the excellent possibility to associate each fuzzy partition of samples with a fuzzy set of characteristics (features), have been successfully applied in this study. FDHAC, a method that utilizes specific regions of chromatographic fingerprints or specific peaks as a fuzzy set of characteristics, was effectively applied to the characterization and classification of medicinal plant extracts according to their antioxidant capacities, using their chromatographic profiles monitored at 242, 260, 280, 320, 340, and 380 nm via HPLC with a multistep isocratic and gradient elution system and diode array detection (HPLC-DAD). What is quite new is the partitioning of the chromatographic retention time ranges and peaks (markers) and their association with different plant extract samples with high, moderate or low antioxidant capacity. Furthermore, the degrees of membership of fingerprints (fuzzy markers) are highly relevant with respect to the (dis)similarity of samples because they indicate both the positions and degrees of association of chromatographic peaks from different classes or individual samples. The obtained results clearly demonstrate the efficiency and information power of these advanced fuzzy methods for medicinal plant characterization and authentication, and this study generates the premise for a new chemometrics approach with high-impact for use in analytical chemistry and other fields.Lactic acid (LA) plays an important role in the tumor metabolism and malignant progression of various cancers. Herein, we have developed a one-step, wash-free microfluidic approach with droplet biosensors for the sensitive detection of LA secreted by a single tumor cell. Our assay integrates the enzyme-assisted chemical conversion of LA in small-volume (4.2 nL) droplets for fluorescence signal readout. The microdroplet assay achieved a limit of detection of 1.02 μM and was more sensitive than the commercial ELISA kit by nearly two orders of magnitude. A good specificity has been demonstrated for this assay by testing various ions and biomolecules from the culture medium. This droplet assay allows us to acquire the profiles of the lactic acid secretion of tumor cells under the influence of glycolytic inhibitors at the single-cell level. It offers a useful research tool to study the cell-to-cell differences of LA secretion and glycolytic inhibitor screening for cancer research.A simple and reproducible method was developed and validated for simultaneous quantification of the pesticide fipronil and its intermediates fipronil desulfinyl, fipronil sulfone and fipronil sulfide, in soil. The analytes were extracted by ultrasonic bath and the ratio of solvents (hexane/acetone), number and time of cycles were optimized by Box-Behnken design with a triplicate central point. The optimal extraction conditions were achieved through a response surface analysis. The clean-up step was conducted by cartridges of solid phase extraction (SPE) containing silica (Florisil®) and aluminum oxide. Gas chromatography with electron capture detection (GC-ECD) was employed for separating fipronil and its intermediates with a suitable resolution and runtime of 20 minutes. The best quantification was achieved with 1  1 (v/v) acetone/hexane and 2 ultrasound cycles of 15 minutes each. The recovery values were between 81 to 108%, with relative standard deviation (RSD) lower than 6%, with no effect of the used matrix.

Autoři článku: Macgregormeldgaard7164 (Braun Butler)