Lysgaardtempleton6747
Chronic gastrointestinal (GI) diseases are the most common diseases in captive common marmosets. To understand the role of the microbiome in GI diseases, we characterized the gut microbiome of 91 healthy marmosets (303 samples) and 59 marmosets diagnosed with inflammatory bowel disease (IBD) (200 samples). Healthy marmosets exhibited "humanized," Bacteroidetes-dominant microbiomes. After up to 2 years of standardized diet, housing and husbandry, marmoset microbiomes could be classified into four distinct marmoset sources based on Prevotella and Bacteroides levels. see more Using a random forest (RF) model, marmosets were classified by source with an accuracy of 93% with 100% sensitivity and 95% specificity using abundance data from 4 Prevotellaceae amplicon sequence variants (ASVs), as well as single ASVs from Coprobacter, Parabacteroides, Paraprevotella, Phascolarctobacterium, Oribacterium and Fusobacterium. A single dysbiotic IBD state was not found across all marmoset sources, but IBD was associated with lower alpha diversity and a lower BacteroidesPrevotella copri ratio within each source. IBD was highest in a Prevotella-dominant cohort, and consistent with Prevotella-linked diseases, pro-inflammatory genes in the jejunum were upregulated. RF analysis of serum biomarkers identified serum calcium, hemoglobin and red blood cell (RBC) counts as potential biomarkers for marmoset IBD. This study characterizes the microbiome of healthy captive common marmosets and demonstrates that source-specific microbiomes can be retained despite standardized diets and husbandry practices. Marmosets with IBD had decreased alpha diversity and a shift in the ratio of BacteroidesPrevotella copri compared to healthy marmosets.Plasma convection in the Earth's magnetosphere from the distant magnetotail to the inner magnetosphere occurs largely in the form of mesoscale flows, i.e., discrete enhancements in the plasma flow with sharp dipolarizations of magnetic field. Recent spacecraft observations suggest that the dipolarization flows are associated with a wide range of kinetic processes such as kinetic Alfvén waves, whistler-mode waves, and nonlinear time-domain structures. In this paper we explore how mesoscale dipolarization flows produce suprathermal electron instabilities, thus providing free energy for the generation of the observed kinetic waves and structures. We employ three-dimensional test-particle simulations of electron dynamics one-way coupled to a global magnetospheric model. The simulations show rapid growth of interchanging regions of parallel and perpendicular electron temperature anisotropies distributed along the magnetic terrain formed around the dipolarization flows. Unencumbered in test-particle simulations, a rapid growth of velocity-space anisotropies in the collisionless magnetotail plasma is expected to be curbed by the generation of plasma waves. The results are compared with in situ observations of an isolated dipolarization flow at one of the Magnetospheric Multiscale Mission spacecraft. The observations show strong wave activity alternating between broad-band wave activity and whistler waves. With estimated spatial extent being similar to the characteristic size of the temperature anisotropy patches in our test-particle simulations, the observed bursts of the wave activity are likely to be produced by the parallel and perpendicular electron energy anisotropies driven by the dipolarization flow, as suggested by our modeling results.Physical activity is a powerful modifiable risk factor for disease and mortality. Physical activity levels in people with spinal cord injury (SCI) have not been quantified relative to uninjured individuals in a large population-based sample. We aimed to quantify and compare physical activity in people with and without SCI, and to examine the associations between physical activity, lifestyle, and socioeconomic factors. The 2010 Canadian Community Health Survey (n > 57,000) was used, which includes three measures that assess physical activity levels (i.e., leisure time activity frequency, leisure time activity intensity, and transportation time activity intensity). Bivariable and multivariable logistic regressions were performed and odds ratios (ORs) with corresponding 95% confidence intervals (CIs) were estimated. The odds of physical activity in people with SCI were 0.43 (95% CI 0.3-0.61), 0.53 (95% CI 0.36-0.75), and 0.42 (95% CI 0.28-0.61), across the three measures of physical activity, respectively. These differences persisted after adjustment for lifestyle, comorbidities, and socioeconomic factors. Physical activity is reduced in the SCI population compared with the general population. This knowledge is important to direct future research and guide the allocation of health care resources.In this article, we propose an experimentally feasible scheme for the ultraslow light realization based on the optomechanically induced transparency (OMIT) phenomenon using a hybrid optomechanical system consisting of a one-dimensional Bose-Einstein condensate trapped in a shallow optical lattice considering the nonlinear effect of atom-atom interaction. It is shown how the system can switch from the normal mode splitting to the OMIT regime by manipulation of the s-wave scattering frequency of atomic collisions when the cavity is pumped at a fixed rate. Then, it is shown that an ultraslow light with a time delay more than 150 ms corresponding to a group velocity about 1 mm/s is achievable by controlling the optical lattice depth as well as the strength of atom-atom interaction and the number of atoms. Importantly, such an ultraslow light is detectable in the output of the cavity since it occurs in the frequency region of coupling-probe detuning where the reflection coefficient of the cavity is maximum.The spike (S) glycoprotein of the pandemic virus, SARS-CoV-2, is a critically important target of vaccine design and therapeutic development. A high-yield, scalable, cGMP-compliant downstream process for the stabilized, soluble, native-like S protein ectodomain is necessary to meet the extensive material requirements for ongoing research and development. As of June 2021, S proteins have exclusively been purified using difficult-to-scale, low-yield methodologies such as affinity and size-exclusion chromatography. Herein we present the first known non-affinity purification method for two S constructs, S_dF_2P and HexaPro, expressed in the mammalian cell line, CHO-DG44. A high-throughput resin screen on the Tecan Freedom EVO200 automated bioprocess workstation led to identification of ion exchange resins as viable purification steps. The chromatographic unit operations along with industry-standard methodologies for viral clearances, low pH treatment and 20 nm filtration, were assessed for feasibility. The developed process was applied to purify HexaPro from a CHO-DG44 stable pool harvest and yielded the highest yet reported amount of pure S protein. Our results demonstrate that commercially available chromatography resins are suitable for cGMP manufacturing of SARS-CoV-2 Spike protein constructs. We anticipate our results will provide a blueprint for worldwide biopharmaceutical production laboratories, as well as a starting point for process intensification.Augmenting the body with artificial limbs controlled concurrently to one's natural limbs has long appeared in science fiction, but recent technological and neuroscientific advances have begun to make this possible. By allowing individuals to achieve otherwise impossible actions, movement augmentation could revolutionize medical and industrial applications and profoundly change the way humans interact with the environment. Here, we construct a movement augmentation taxonomy through what is augmented and how it is achieved. With this framework, we analyze augmentation that extends the number of degrees-of-freedom, discuss critical features of effective augmentation such as physiological control signals, sensory feedback and learning as well as application scenarios, and propose a vision for the field.We conducted a longitudinal online study to examine attenuated psychotic symptoms (APS) over time in a sample of locked-down individuals. We used (i) questionnaires and (ii) the automatic analysis of the emotional content of narratives. Participants (N = 162) were recruited to complete an online survey 4 times between March and June 2020 (T1, T2, T3, T4). T1 completion coincided with the beginning of the lockdown, and T4 with the pandemic trough. Depression, anxiety, and stress were assessed with the DASS-42 and APS with the PQ-16. Psychosocial data such as the feeling of loneliness and social network size were also collected. The participants wrote daily narratives during the lockdown period. Anxiety and APS were the highest at T1 and decreased over time. APS and APS-associated distress were correlated with the DASS-42 at all times. APS arose acutely at the beginning of the pandemic, despite participants being socio-economically advantaged, and were related with negative emotions.Mitogenomes are useful for inferring phylogenetic relationships between organisms. Although the mitogenomes of Annelida, one of the most morphologically and ecologically diverse metazoan groups have been well sequenced, those of several families remain unexamined. This study determined the first mitogenome from the family Travisiidae (Travisia sanrikuensis), analyzed its mitogenomic features, and reconstructed a phylogeny of Sedentaria. The monophyly of the Terebellida + Arenicolida + Travisiidae clade is supported by molecular phylogenetic analysis. The placement of Travisiidae is unclear because of the lack of mitogenomes from closely related lineages. An unexpected intron appeared within the cox1 gene of T. sanrikuensis and in the same positions of five undescribed Travisia spp. Although the introns are shorter (790-1386 bp) than other group II introns, they can be considered degenerate group II introns due to type II intron maturase open reading frames, found in two of the examined species, and motifs characteristic of group II introns. This is likely the first known case in metazoans where mitochondrial group II introns obtained by a common ancestor are conserved in several descendants. Insufficient evolutionary time for intron loss in Travisiidae, or undetermined mechanisms may have helped maintain the degenerate introns.The Andean cordillera was constructed during compressive tectonic events, whose causes and controls remain unclear. Exploring a possible link to plate convergence has been impeded by the coarse temporal resolution of existing plate kinematic models. Here we show that the Neogene evolution of the Andean margin is primarily related to changes in convergence as observed in new high-resolution plate reconstructions. Building on a compilation of plate finite rotations spanning the last 30 million years and using noise-mitigation techniques, we predict several short-term convergence changes that were unresolved in previous models. These changes are related to main tectono-magmatic events and require forces that are compatible with a range of geodynamic processes. These results allow to revise models of ongoing subduction orogeny at its type locality, emphasizing the role of upper plate deformation in the balance between kinematic energy associated with plate motion and gravitational potential energy stored in orogenic crustal roots.