Lyhnecrouch5206
The origins of the pH-dependent kinetics of hydrogen evolution and oxidation reactions on Pt surfaces are unsolved dilemmas that have lasted for over half a century. In this study, surface-enhanced infrared absorption spectroscopy is applied to directly monitor the vibrational behaviors of adsorbed hydrogen atoms and interfacial water molecules on Pt surfaces in a wide pH window from 1.1 to 12.9. For the first time, we successfully measure the pH-dependent changes of hydrogen and water binding strength according to their vibrational wavenumbers, which are both monotonously weakened as the solution pH increases. Their changes are the net results of altered electrochemical interface environments and are important contributions to the pH-dependent hydrogen reaction kinetics. Our results add significant new insights into the role of interfacial environments on electrocatalysis.Eicosapentaenoic acid (EPA)-enriched phosphoethanolamine plasmalogens (EPA-PlsEtns) might be retained in the intestine rich in gut microbiota for a long time after treatment. It reminded us that EPA-PlsEtns might affect intestinal microbiota composition and its metabolites, which have been identified as a contributing factor in the development of cardiovascular diseases. In the present study, EPA-PlsEtn administration for 8 weeks significantly reduced the atherosclerotic lesion area in low-density lipoprotein receptor deficient (LDLR-/-) mice. Notably, the serum total cholesterol and low-density lipoprotein cholesterol levels were significantly reduced by 33.6 and 38.2%, respectively, by EPA-PlsEtns instead of EPA in the form of ethyl ester (EPA-EE) treatment compared with the model group. EPA-PlsEtn administration also increased total neutral sterol and bile acids in feces by 92 and 39%, respectively, rather than EPA-EE. Mechanistically, EPA-PlsEtns might affect the abundance of gut microbiota contributing to the alteration of bile acid profiles, which might further accelerate bile acid synthesis via increasing cholesterol 7 α-hydroxylase expression induced by the inhibition of farnesoid X receptor activation.Separation is one of the most energy-intensive processes in chemical industry and membrane-based separation technology helps to reduce the energy consumption dramatically. Supported metal-organic framework (MOF) layers hold great promise as molecular sieve membrane, yet only a few MOF membranes showed the expected separation performance. The main reasons are e.g. nonselective grain boundary transport or the flexible MOF framework, especially the inevitable linker rotation. Here, we propose a crystal engineering strategy that balances the grain boundary structure and framework flexibility in Co-Zn bimetallic zeolitic imidazolate framework (ZIF) membranes and exploit their contributions to the improvement of membrane quality and separation performance. read more It reveals that a good balance between the two trade-off factors enabled a "sweet spot" that offers the best C3H6/C3H8 separation factor up to 200.Condensation on lubricant-infused micro- or nanotextured superhydrophobic surfaces exhibits remarkable heat transfer performance owing to the high condensation nucleation density and efficient condensate droplet removal. When a low surface tension lubricant is used, it can spread on the condensed droplet and "cloak" it. Here, we describe a previously unobserved condensation phenomenon of satellite droplet formation on lubricant-cloaked water droplets using environmental scanning electron microscopy. The presence of satellite droplets confirms the cloaking behavior of common lubricants on water such as Krytox oils. More interestingly, we have observed satellite droplets on BMIm ionic liquid-infused surfaces, which is unexpected because BMIm was used in previous reports as a lubricant to eliminate cloaking during water condensation. Our studies reveal that the cloaking of BMIm on water droplets is theoretically favorable due to the fast timescale spreading during initial condensation when compared to the long timescale required for dissolution of the lubricant in water. We utilize a novel characterization approach based on Raman spectroscopy to confirm the existence of cloaking lubricant films on water droplets residing on lubricant-infused surfaces. The selected lubricants include Krytox oil, ionic liquid, and dodecane, which have drastically different surface tensions and polarities. In addition, spreading dynamics of cloaking and noncloaking lubricants on water droplets show that ionic liquid has the capability to mobilize water droplets spontaneously owing to cloaking and its relatively high surface tension. Our studies not only elucidate the physics governing cloaking and satellite droplet condensation phenomena at micro- and macroscales but also reveal a subset of previously unobserved lubricant-water interfacial interactions for a large variety of applications.We have presented a multilayer implementation of the equation of motion coupled-cluster method for the electron affinity, based on local and pair natural orbitals. The method gives consistent accuracy for both localized and delocalized anionic states and results in many-fold speed-up as compared to the canonical and DLPNO-based implementation of the EA-EOM-CCSD method. We have also developed an explicit fragment-based approach which can lead to even higher speed-up with little loss in accuracy. The multilayer method can be used to treat the environmental effect of both bonded and nonbonded nature on the electron attachment process in large molecules.Stereocontrolled multilayer growth of supramolecular porous networks at the interface between graphite and a solution was investigated. For this study, we designed a chiral dehydrobenzo[12]annulene (DBA) building block bearing alkoxy chains substituted at the 2 position with hydroxy groups, which enable van der Waals stabilization in a layer and potential hydrogen-bonding interactions between the layers. Bias voltage-dependent scanning tunneling microscopy (STM) experiments revealed the diastereospecificity of the bilayer with respect to both the intrinsic chirality of the building blocks and the supramolecular chirality of the self-assembled networks. Top and bottom layers within the same crystalline domain were composed of the same enantiomers but displayed opposite supramolecular chiralities.Background The clinical phenotyping of patients with achromatopsia harboring variants in phosphordiesterase 6C (PDE6C) has poorly been described in the literature. PDE6C encodes the catalytic subunit of the cone phosphodiesterase, which hydrolyzes the cyclic guanosine monophosphate that proceeds with the hyperpolarization of photoreceptor cell membranes, as the final step of the phototransduction cascade. Methods In the current study, two patients from a consanguineous family underwent full ophthalmologic examination and molecular investigations including WES. The impact of the variant on the functionality of the protein has been analyzed using in silico molecular modeling. Results The patients identified with achromatopsia segregated a homozygous missense variant (c.C1775Ap.A592D) in PDE6C gene located on chromosome 10q23. Molecular modeling demonstrated that the variant would cause a protein conformational change and result in reduced phosphodiesterase activity. Conclusion Our data extended the phenotypic spectrum of retinal disorders caused by PDE6C variants and provided new clinical and genetic information on achromatopsia.Background The present study aimed to evaluate the effects of different concentrations of cerium oxide nanoparticles (CONPs) on the oxidative stress (OS) status in kidney, lung, and serum of rats. Methods Male Wistar Rats were treated intraperitoneally with 15, 30, and 60 mg/kg/day of CONPs. The biochemical parameters, including total antioxidant capacity (TAC), total thiol group (TTG), malondialdehyde (MDA), SOD (superoxide dismutase), and catalase (CAT) were assayed in serum, kidney, and lung tissues. Results MDA decreased, but TTG and CAT increased in serum by the administration of CONPs at 15 mg/kg. In kidney homogenate obtained from the group treated with CONPs at 15 mg/kg, TAC, TTG, and CAT significantly increased compared to the control group. However, CONPs at 15, 30, and 60 mg/kg significantly decreased MDA level compared to the control group. In lung tissue, CONPs in doses of 15, 30 and 60 mg/kg significantly decreased CAT activity, TTG and TAC compared to the control group, while in kidney tissue, CONPs at the concentrations of 30 and 60 mg/kg significantly increased MDA compared to the control group. Conclusion Our findings suggest that CONPs attenuate OS in the kidney and affect the serum levels of OS-related markers but induce OS in the lung tissue in a dose-dependent manner.Background Our previous findings indicated that carvacrol and thymol alleviate cognitive impairments caused by Aβ in rodent models of Alzheimer's disease (AD). In this study, the neuroprotective effects of carvacrol and thymol against Aβ25-35-induced cytotoxicity were evaluated, and the potential mechanisms were determined. Methods PC12 cells were pretreated with Aβ25-35 for 2 h, followed by incubation with carvacrol or thymol for additional 48 h. Cell viability was measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. A flurospectrophotometer was employed to observe the intracellular reactive oxygen species (ROS) production. Protein kinase C (PKC) activity was analyzed using ELISA. Results Our results indicated that carvacrol and thymol could significantly protect PC12 cells against Aβ25-35-induced cytotoxicity. Furthermore, Aβ25-35 could induce intracellular ROS production, while carvacrol and thymol could reverse this effect. Moreover, our findings showed that carvacrol and thymol elevate PKC activity similar to Bryostatin-1, as a PKC activator. Conclusion This study provided the evidence regarding the protective effects of carvacrol and thymol against Aβ25–35-induced cytotoxicity in PC12 cells. The results suggested that the neuroprotective effects of these compounds against Aβ25-35 might be through attenuating oxidative damage and increasing the activity of PKC as a memory-related protein. Thus, carvacrol and thymol were found to have therapeutic potential in preventing or modulating AD.Background Through combining two synthetic and natural polymers, scaffolds can be developed for tissue engineering and regenerative medicine purposes. Methods In this work, carboxymethyl chitosan (CMC; 20%) was grafted to Polycaprolactone (PCL) nanofibers using the cold atmospheric plasma of helium. The PCL scaffolds were exposed to CAP, and functional groups were developed on the PCL surface. Results The results of Fourier Transform Infrared Spectroscopy confirmed CMC (20%) graft on PCL scaffold. The Thiazolyl blue tetrazolium bromide assay showed a significant enhancement (p less then 0.05) in the cell affinity and proliferation of adipose-derived stem cells (ADSCs) to CMC20%-graft-PCL scaffolds. After 14 days, bone differentiation was affirmed through alizarin red and calcium depositions. Conclusion Based on the results, the CMC20%-graft-PCL can support the proliferation of ADSCs and induce the differentiation into bone with longer culture time.