Lundingabernathy3119
Moreover, after 21 days of immersion in SBF, the PMMA-silica coating presented apatite crystal deposits, which suggests in vivo bone bioactivity. This was confirmed by biological characterization showing enhanced osteoblast proliferation, explained by the increased surface free energy and protein adsorption. The obtained results suggest that PMMA-silica hybrids can act in a dual role as efficient anticorrosive and bioactive coating for Ti6Al4V alloys. Novel antimicrobial agents with a low propensity to develop resistance by microorganisms have contemporary relevance. In this perspective, the present study reports the green synthesis and characterization of cecropins peptides (D2A21, D2A10, and D4E1) based silver nanocomposites. The effect of pH and concentration of peptides on the formation of nanocomposite material was studied using UV-Vis spectroscopy. The particle size was determined by transmission electron microscopy, which indicated the size in the range of 3 ± 0.4 to 20 ± 5 nm. Fourier-transform infrared spectroscopy studies suggested the involvement of peptides as a capping and reducing agent. Zeta potential analysis suggested that nanocomposite material was more cationic in nature than its native peptides. Nanocomposite material exhibited significantly enhanced antibacterial activity as compared to native peptides and silver nanoparticles with minimum inhibitory concentration (MIC) ranging from 1 to 3 μg mL-1 against both gram-positive and negative test bacteria; whereas the MICs of native peptides were found to be in the range of 4-6 μg mL-1. The mode of action of P-AgNPs was evaluated using scanning electron microscopy, membrane potential, and membrane integrity studies; wherein the nanocomposite material was found to act at the cell membrane level, causing complete loss of membrane potential and resulting in compromised membrane integrity with irreversible damage to the cell as shown by the rapid loss of viability due to membrane disruption, resulting in lysis. Among the three peptides tested, D2A21-silver nanocomposite had maximal antibacterial activity. Taken together; our experimental findings suggested that the peptide-based-silver nanocomposites can be considered as potential antibacterial agents for various biomedical applications. V.Nanofibrous scaffolds with structural and compositional gradients exhibit great potential to modulate zonal differentiation of stem cells for the regeneration of soft-to-hard tissue interface. Here, the response of bone marrow stem cells (BMSCs) to electrospun gradient nanofibrous scaffolds was investigated to demonstrate their potential capabilities for interfacial tissue regeneration. The electrospun scaffolds showed gradient distribution of BMP-2/nanoHA contents and the fiber orientations gradually changed from random to align. Biomimetic mineralization demonstrated that calcium and phosphorus elements can deposit onto the surface of the nanofibers in a gradient manner similar to nanoHA content. BMSCs cultured on the gradient nanofibrous scaffolds exhibited high cell viability and cell morphology gradually changed from disorder to highly align similar to the underlying fiber orientation. BMP-2/nanoHA content gradients in the nanofibrous scaffolds were found to effectively promote the zonal expression of bone-specific genes like osteocalcin (OCN), Runt-related transcription factor 2 (Runx2) and alkaline phosphatase (ALP). Immunofluorescent staining of osteopontin (OPN) and OCN further confirmed osteoblastic phenotypic maturation on the regions of the scaffolds with a higher level of nanoHA and BMP-2 contents after cultured 28 days. These results indicated that the gradient nanofibrous scaffolds enable to guide zonal differentiation of BMSCs in vitro, which might be useful to realize multitissue regeneration in one construct for the regeneration of soft-to-hard tissue interface. The study is aimed to synthesize potent metal oxide based biomimetic nanocomposites to overcome the risk associated with artificial bone tissue engineering. High purity TiO2 nanoparticles are synthesized via hydrothermal route. this website A biomimetic nanocomposite scaffolds containing chitosan-sodium alginate (4 4) blended with three different (0.5, 1, and 1.5 wt%) concentrations of hydrothermally synthesized TiO2 nanoparticles are obtained by solvent casting technique. The physico-chemical and thermal degradation properties of as-synthesized TiO2 nanoparticles and their nanocomposite scaffolds are analyzed. In-vitro cytotoxicity and biocompatibility of the prepared TiO2 nanoparticles and nanocomposites are tested against human bladder tumor (UC6) and osteosarcoma (MG-63) cell lines. Antibacterial property is tested against Escherichia coli and Staphylococcus aureus. These studies reveal that TiO2 nanoparticles and polymeric nanocomposites contain good physico-chemical and mechanical properties for enhanced in-vitro biocompatibility suitable for biomedical applications. Biomimetically prepared chitosan-sodium alginate scaffold containing TiO2 nanoparticles (1 wt%) is found to exhibit superior biocompatibility for bone tissue engineering applications. V.The present study presents a green, cost efficient and easy synthesis method of silver nanoparticles (AgNPs) using an aqueous extract of Cornus sanguinea L. fruits (CS). The phytosynthesized silver nanoparticles were characterized using various analytical techniques such as UV-Vis absorption spectroscopy, which confirmed the formation of AgNPs and FTIR spectroscopy, in order to certify the role of the biomolecules present in the fruit extract as reducing and capping agents of the AgNPs. The UV-Vis absorption spectrum showed a broad band at 407 nm characteristic for colloidal silver. Transmission electron microscopy was conducted to investigate the shape and size of the silver nanoparticles, revealing a spherical shape with an average particle size of 18 nm. The antioxidant and anti-inflammatory activities of the fruit extract and green synthesized silver nanoparticles were assessed in vivo on experimental inflammation. The obtained results showed that CS and AgNPs reduced oxidative stress in parallel with increasing of antioxidant defense and diminished the COX-2 expressions.