Loweboswell4926

Z Iurium Wiki

Using this technology, the number of abnormally grown grains on the copper foil can be controlled to single one. This abnormally grown grain will grow rapidly to decimeter-size by consuming the surrounding small grains. This work provides a new perspective for the understanding of the recrystallization of metals, and a new method for the preparation of large-area single-crystal copper foils.The surface charge of iron oxide nanoparticles (IONPs) plays a critical role in the interactions between nanoparticles and biological components, which significantly affects their toxicity in vitro and in vivo. In this study, we synthesized three differently charged IONPs (negative, neutral, and positive) based on catechol-derived dopamine, polyethylene glycol, carboxylic acid, and amine groups, via reversible addition-fragmentation chain transfer-mediated polymerization (RAFT polymerization) and ligand exchange. The zeta potentials of the negative, neutral, and positive IONPs were -39, -0.6, and +32 mV, respectively, and all three IONPs showed long-term colloidal stability for three months in an aqueous solution without agglomeration. The cytotoxicity of the IONPs was studied by analyzing cell viability and morphological alteration in three human cell lines, A549, Huh-7, and SH-SY5Y. Neither IONP caused significant cellular damage in any of the three cell lines. Furthermore, the IONPs showed no acute toxicity in BALB/c mice, in hematological and histological analyses. These results indicate that our charged IONPs, having high colloidal stability and biocompatibility, are viable for bio-applications.Over a decade ago, it was confirmed that detonation nanodiamond (DND) powders reflect very cold neutrons (VCNs) diffusively at any incidence angle and that they reflect cold neutrons quasi-specularly at small incidence angles. In the present publication, we report the results of a study on the effect of particle sizes on the overall efficiency of neutron reflectors made of DNDs. To perform this study, we separated, by centrifugation, the fraction of finer DND nanoparticles (which are referred to as S-DNDs here) from a broad initial size distribution and experimentally and theoretically compared the performance of such a neutron reflector with that from deagglomerated fluorinated DNDs (DF-DNDs). Typical commercially available DNDs with the size of ~4.3 nm are close to the optimum for VCNs with a typical velocity of ~50 m/s, while smaller and larger DNDs are more efficient for faster and slower VCN velocities, respectively. Simulations show that, for a realistic reflector geometry, the replacement of DF-DNDs (a reflector with the best achieved performance) by S-DNDs (with smaller size DNDs) increases the neutron albedo in the velocity range above ~60 m/s. This increase in the albedo results in an increase in the density of faster VCNs in such a reflector cavity of up to ~25% as well as an increase in the upper boundary of the velocities of efficient VCN reflection.In recent years, the static and dynamic response of micro/nanobeams made of hyperelasticity materials received great attention. In the majority of studies in this area, the strain-stiffing effect that plays a major role in many hyperelastic materials has not been investigated deeply. Moreover, the influence of the size effect and large rotation for such a beam that is important for the large deformation was not addressed. This paper attempts to explore the free and forced vibrations of a micro/nanobeam made of a hyperelastic material incorporating strain-stiffening, size effect, and moderate rotation. The beam is modelled based on the Euler-Bernoulli beam theory, and strains are obtained via an extended von Kármán theory. Boundary conditions and governing equations are derived by way of Hamilton's principle. The multiple scales method is applied to obtain the frequency response equation, and Hamilton's technique is utilized to obtain the free undamped nonlinear frequency. Quizartinib price The influence of important system parameters such as the stiffening parameter, damping coefficient, length of the beam, length-scale parameter, and forcing amplitude on the frequency response, force response, and nonlinear frequency is analyzed. Results show that the hyperelastic microbeam shows a nonlinear hardening behavior, which this type of nonlinearity gets stronger by increasing the strain-stiffening effect. Conversely, as the strain-stiffening effect is decreased, the nonlinear frequency is decreased accordingly. The evidence from this study suggests that incorporating strain-stiffening in hyperelastic beams could improve their vibrational performance. The model proposed in this paper is mathematically simple and can be utilized for other kinds of micro/nanobeams with different boundary conditions.Ferroelectric thin film capacitors have triggered great interest in pulsed power systems because of their high-power density and ultrafast charge-discharge speed, but less attention has been paid to the realization of flexible capacitors for wearable electronics and power systems. In this work, a flexible Ba0.5Sr0.5TiO3/0.4BiFeO3-0.6SrTiO3 thin film capacitor is synthesized on mica substrate. It possesses an energy storage density of Wrec ~ 62 J cm-3, combined with an efficiency of η ~ 74% due to the moderate breakdown strength (3000 kV cm-1) and the strong relaxor behavior. The energy storage performances for the film capacitor are also very stable over a broad temperature range (-50-200 °C) and frequency range (500 Hz-20 kHz). Moreover, the Wrec and η are stabilized after 108 fatigue cycles. Additionally, the superior energy storage capability can be well maintained under a small bending radius (r = 2 mm), or after 104 mechanical bending cycles. These results reveal that the Ba0.5Sr0.5TiO3/0.4BiFeO3-0.6SrTiO3 film capacitors in this work have great potential for use in flexible microenergy storage systems.Light-responsive nanocomposites have become increasingly attractive in the biomedical field for antibacterial applications. Visible-light-activated metallic molybdenum disulfide nanosheets (1T-MoS2 NSs) and plasmonic gold nanorods (AuNRs) with absorption at a wavelength of 808 nm were synthesized. AuNR nanocomposites decorated onto 1T-MoS2 NSs (MoS2@AuNRs) were successfully prepared by electrostatic adsorption for phototherapy applications. Based on the photothermal effect, the solution temperature of the MoS2@AuNR nanocomposites increased from 25 to 66.7 °C after 808 nm near-infrared (NIR) laser irradiation for 10 min. For the photodynamic effect, the MoS2@AuNR nanocomposites generated reactive oxygen species (ROS) under visible light irradiation. Photothermal therapy and photodynamic therapy of MoS2@AuNRs were confirmed against E. coli by agar plate counts. Most importantly, the combination of photothermal therapy and photodynamic therapy from the MoS2@AuNR nanocomposites revealed higher antibacterial activity than photothermal or photodynamic therapy alone. The light-activated MoS2@AuNR nanocomposites exhibited a remarkable synergistic effect of photothermal therapy and photodynamic therapy, which provides an alternative approach to fight bacterial infections.The applicability of the Kramers-Kronig relation for attenuated total reflection (ATR) from a metal-dielectric interface that can excite surface plasmon polaritons (SPP) is theoretically investigated. The plasmon-induced attenuation of reflected light can be taken as the resonant absorption of light through a virtual absorptive medium. The optical phase shift of light reflected from the SPP-generating interface is calculated using the KK relation, for which the spectral dependence of ATR is used at around the plasmonic resonance. The KK relation-calculated phase shift shows good agreement with that directly obtained from the reflection coefficient, calculated by a field transfer matrix formula at around the resonance. This indicates that physical causality also produces the spectral dependence of the phase of the leakage field radiated by surface plasmons that would interfere with the reflected part of light incident to the interface. This is analogous with optical dispersion in an absorptive medium where the phase of the secondary field induced by a medium polarization, which interferes with a polarization-stimulating incident field, has a spectral dependence that stems from physical causality.In this current work, antimicrobial films based on starch, poly(butylene adipate-co-terephthalate) (PBAT), and a commercially available AgNPs@SiO2 antibacterial composite particle product were produced by using a melt blending and blowing technique. The effects of AgNPs@SiO2 at various loadings (0, 1, 2, 3, and 4 wt%) on the physicochemical properties and antibacterial activities of starch/PBAT composite films were investigated. AgNPs@SiO2 particles were more compatible with starch than PBAT, resulting in preferential distribution of AgNPs@SiO2 in the starch phase. Infusion of starch/PBAT composite films with AgNPs@SiO2 marginally improved mechanical and water vapor barrier properties, while surface hydrophobicity increased as compared with films without AgNPs@SiO2. The composite films displayed superior antibacterial activities against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The sample loaded with 1 wt% AgNPs@SiO2 (SPA-1) showed nearly 90% inhibition efficiency on the tested microorganisms. Furthermore, a preliminary study on peach and nectarine at 53% RH and 24 °C revealed that SPA-1 film inhibited microbial spoilage and extended the product shelf life as compared with SPA-0 and commercial LDPE packaging materials. The high-throughput production method and strong antibacterial activities of the starch/PBAT/AgNPs@SiO2 composite films make them promising as antimicrobial packaging materials for commercial application.Central focus in modern anticancer nanosystems is given to certain types of nanomaterials such as graphene oxide (GO). Its functionalization with polyethylene glycol (PEG) demonstrates high delivery efficiency and controllable release of proteins, bioimaging agents, chemotherapeutics and anticancer drugs. GO-PEG has a good biological safety profile, exhibits high NIR absorbance and capacity in photothermal treatment. To investigate the bioactivity of PEGylated GO NPs in combination with NIR irradiation on colorectal cancer cells we conducted experiments that aim to reveal the molecular mechanisms of action of this nanocarrier, combined with near-infrared light (NIR) on the high invasive Colon26 and the low invasive HT29 colon cancer cell lines. During reaching cancer cells the phototoxicity of GO-PEG is modulated by NIR laser irradiation. We observed that PEGylation of GO nanoparticles has well-pronounced biocompatibility toward colorectal carcinoma cells, besides their different malignant potential and treatment times. This biocompatibility is potentiated when GO-PEG treatment is combined with NIR irradiation, especially for cells cultured and treated for 24 h. The tested bioactivity of GO-PEG in combination with NIR irradiation induced little to no damages in DNA and did not influence the mitochondrial activity. Our findings demonstrate the potential of GO-PEG-based photoactivity as a nanosystem for colorectal cancer treatment.

Autoři článku: Loweboswell4926 (Beier Parrish)