Lindgrenehlers5053

Z Iurium Wiki

Impedance metasurface can establish a link between an electromagnetic surface wave and spatial wave and hence has attracted much attention of researchers in recent years. The holographic method, which is well known in the optical area, has also the great ability to shape the radiated beams in the microwave band by introducing the concept of surface impedance. Here, we propose a method to shape the radiated beams at two different wavelengths using single-layer multiplexing holographic impedance metasurface with in-plane feeding. For one wavelength, the generated broadside beam in the far field has the left-hand circular polarization, while the broadside beam in the other wavelength has the right-hand circular polarization. The radiation performance under different wavelengths are controlled independently due to the novel design of two eigen-modes in the impedance unit cell, in which the ratio of the two wavelengths can be large enough. To verify the proposed design experimentally, we fabricate a metasurface sample, and good agreement is observed between the simulation and measurement results.We propose a multi-stage calibration method for increasing the overall accuracy of a large-scale structured light system by leveraging the conventional stereo calibration approach using a pinhole model. We first calibrate the intrinsic parameters at a near distance and then the extrinsic parameters with a low-cost large-calibration target at the designed measurement distance. Finally, we estimate pixel-wise errors from standard stereo 3D reconstructions and determine the pixel-wise phase-to-coordinate relationships using low-order polynomials. The calibrated pixel-wise polynomial functions can be used for 3D reconstruction for a given pixel phase value. We experimentally demonstrated that our proposed method achieves high accuracy for a large volume sub-millimeter within 1200(H) × 800 (V) × 1000(D) mm3.Axial optical chain (optical bottle beams) beams are widely used in optical micromanipulation, atom trapping, guiding and binding of microparticles and biological cells, etc. However, the generation of axial optical chain beams are not very flexible at present, and its important characteristics such as periodicity and phase shift cannot be easily regulated. Here, we propose a holographic method to achieve the axial optical chain beams with controllable periodicity and phase. A double annular phase diagram is generated based on the gratings and lenses algorithms. The beam incident to the double annular slits was tilted from the optical axis to produce concentric double annular beams. The annular beam with different radius will produce the zero-order Bessel beam with different axial wave vector. Axial optical chain beams is produced by interference of two zero-order Bessel beams with different axial wave vectors. The phase and periodicity of the axial optical chain beams can be changed by changing the initial phase difference and radius of the double annular slits of the double annular phase diagram, respectively. The feasibility and effectiveness of the proposed method are demonstrated by theoretical numerical analysis and experiments. This method will further expand the application of axial optical chain beams in optical tweezers, optical modulation and other fields.Complex terahertz (THz) System-on-Chip (TSoC) circuits require ultra-wideband low-loss low-dispersion interconnections between building-block components of various dimensions and characteristics. Tapered transmission lines, which enable the gradual transformation of both physical dimensions and characteristic impedance, are a convenient basis for these interconnections. In this paper, we quantify both experimentally and through simulation, the efficacy of transmission-line tapers connecting two different coplanar-strip transmission-line configurations, for frequencies up to 2.0 THz and with 25 GHz spectral resolution. We demonstrate tapers that enable transitioning from a small device-constrained transmission-line dimension (10 μm line width) to a lower-loss (20-40 μm line width) dimension, as a method to reduce the overall attenuation, and outline design constraints for tapered sections that have minimal detrimental impact on THz pulse propagation.We investigate second harmonic generation (SHG) in all-dielectric resonance nanostructures of high-Q factors assisted by quasi-bound states in the continuum (quasi-BICs). The typical resonators, e.g., guided-mode resonance gratings and asymmetric metasurfaces, fabricated by AlGaAs were numerically studied with the consideration of nonlinear refraction of AlGaAs. The resonance peak and line-shape of linear transmission and SHG spectra in the resonators can be dramatically changed under intense pump intensities. The SHG conversion efficiency in the nanostructures working at quasi-BICs is much lower than the traditionally expected values without considering the nonlinear refraction of dielectrics. The ultimate SHG conversion efficiency is finally obtained. The investigation has the significance for the design and understanding of efficient nonlinear metasurfaces of high-Q factors.A method for enhancing the temporal contrast of high-power femtosecond laser pulses is proposed. The suppression of low-intensity radiation and the simultaneous 100% transmission of a pulse peak are attained due to the nonlinear phase difference π between the orthogonally polarized waves, leading to a 90-degree rotation of polarization. The polarization interferometer has an in-line geometry that does not demand spatial beam separation. The output pulse compression and power enhancement are implemented as a result of self-phase modulation in the interferometer and subsequent reflection from the chirping mirrors.Time-resolved Kerr rotation microscopy is used to generate and measure spin valley polarization in MOCVD-grown monolayer tungsten diselenide (WSe2). The Kerr signal reveals bi-exponential decay with time constants of 100 ps and 3 ns. Measurements are performed on several triangular flakes from the same growth cycle and reveal larger spin valley polarization near the edges of the flakes. This spatial dependence is observed across multiple WSe2 flakes in the Kerr rotation measurements but not in the spatially resolved reflectivity or microphotoluminescence data. see more Time-resolved pump-probe overlap measurements further reveal that the Kerr signal's spatial dependence is not due to spin diffusion on the nanosecond timescale.Polarization modulation and multichannel beam generation are crucial in multichannel communication and high-resolution imaging at THz frequency. In this work, we present a polarization-reprogrammable coding metasurface composed of VO2/Au composite concentric rings (CCRs). Owing to the phase-change property of VO2, the CCR is designed as a digital coding element for the polarization conversion. When VO2 remains insulator state at room temperature, the y-polarized incident wave is transformed into x-polarized wave, which can be regarded as digital state 0. When VO2 converts into metal state at critical temperature (68 °C), the polarization of reflected wave stays unchanged, corresponding to digital state 1. Any desired linear polarization state of reflected beam is achieved by taking advantage of different coding sequences in a programmable manner. Furthermore, by combining phase gradient with polarization coding states, we propose an anisotropic programmable metasurface to control the multi-channel reflected beams dynamically. link2 By arranging distinct coding sequences, we show that the EM reflected beams can be manipulated flexibly. The proposed programmable metasurface paves new ways towards THz polarization manipulation, signal detection and information communication.The coherent Doppler wind lidar (CDL) shows capability in precipitation detection. Retrieval of the raindrop size distribution (DSD) using CDL is still challenging work, as both accurate backscattering cross section at the working wavelength and reflectivity spectrum of raindrop are required. Firstly, the Mie theory and the vectorial complex ray model (VCRM) are applied to calculate backscattering cross section for small spheric raindrops and large oblate raindrops, respectively. Secondly, an iterative deconvolution method is proposed to separate the reflectivity spectrum of raindrop from the lidar power spectrum, which is a superposition of rain and aerosol components. An accompanying aerosol signal model considering the effect of temporal window, from the same height and time, is used to improve the accuracy and robustness of the iteration. In experiment, a co-located micro rain radar (MRR) is used for comparison. Good agreements are obtained despite tremendous differences in wavelength and scattering characteristics. As an example, at 600 m height, the R2 of linear fitting to the mean rain velocity and mean raindrop diameter between CDL and MRR are 0.96 and 0.93, respectively.Recently, freeform optics has been widely used due to its unprecedented compactness and high performance, especially in the reflective designs for broad-wavelength imaging applications. Here, we present a generalized differentiable ray tracing approach suitable for most optical surfaces. The established automated freeform design framework simultaneously calculates multi-surface coefficients with merely the system geometry known, very fast for generating abundant feasible starting points. In addition, we provide a "double-pass surface" strategy with desired overlap (not mutually centered) that enables a component reduction for very compact yet high-performing designs. The effectiveness of the method is firstly demonstrated by designing a wide field-of-view, fast f-number, four-mirror freeform telescope. Another example shows a two-freeform, three-mirror, four-reflection design with high compactness and cost-friendly considerations with a double-pass spherical mirror. The present work provides a robust design scheme for reflective freeform imaging systems in general, and it unlocks a series of new 'double-pass surface' designs for very compact, high-performing freeform imaging systems.Light transmission characteristics in a strongly disordered medium of dielectric scatterers, having dimensionalities similar to those of self-organized GaN nanowires, is analyzed employing finite difference time domain analysis technique. While photonic bandgap like transmission gaps have already been reported for several quasi-crystalline and weakly disordered media, the results of this work show that in spite of the lack of any form of quasi-crystallinity, distinct transmission gaps can be attained in a strongly disordered medium of dielectric scatterers. In fact, similar to the case of a two-dimensional photonic crystal, transmission gap of a uniform random medium of GaN nanowires can be tuned from ultra-violet to visible regime of the spectrum by varying diameter and fill-factor of the nanowires. link3 Comparison of transmission characteristics of periodic, weakly disordered, correlated strongly disordered and uniform strongly disordered arrays having nanowires of identical diameters and fill factors suggest that in spite of the dominance of multiple scattering process, the underlying Mie and Bragg processes contribute to the emergence and tunability of transmission gaps in a strongly disordered medium. Without any loss of generality, the findings of this work offer significant design latitude for controlling transmission properties in the strong disorder regime, thereby offering the prospect of designing disorder based novel photonic and optoelectronic devices and systems.

Autoři článku: Lindgrenehlers5053 (Hansen Salisbury)