Limlunding7491

Z Iurium Wiki

Cattle manure is a major livestock waste in agroecosystem, and in-situ catalytic pyrolysis is considered as a potential technology for its disposal. In order to increase the gas production during cattle manure pyrolysis and alleviate the problem of frequent regeneration-separation of the in-situ catalyst, a strategy of in-situ catalytic pyrolysis was proposed in this work, in which the pyrolytic char product was not separated from the pyrolysis catalyst of NiO/γ-Al2O3 but mixed with it and recycled for several times as the co-catalyst for cattle manure pyrolysis instead. Adopting this strategy, it was observed that the mixed-type catalyst could lead to 70% increase in gas production and 82% promotion in syngas energy conversion rate compared with the circumstance of no catalyst added. Through different means of characterization, it was found that there are synergistic effects between char and NiO/γ-Al2O3, which enhance the catalytic performance of catalyst. On one hand, during the pyrolysis process, char can translate NiO into Ni that has higher cracking activity through in-situ reduction. KN-62 supplier On the other hand, due to its rich porous texture and large pore volume, char can act as an additional adsorbent for the reactants. Based on the experimental results of this work, the proposed strategy of cyclic in-situ catalysis with the recycled char as the co-catalyst can be a promising scheme in the practical biomass pyrolysis process for gas production. Efficient recovery of REEs present in the battery waste is a modern problem that has proven to be difficult to solve in an efficient manner. The raw material investigated in the current study is mixed alkaline rare earth element (REE) double sulfate (DS) precipitate, originating from the sulfuric acid leachate of nickel-metal hydride battery (NiMH) waste. Typically, REE can be precipitated as a mixture of REE double sulfates, however the real challenge is the separation of REEs from each other's into pure fraction. The study elucidates the process by which the DS are transformed into hydroxides with simultaneous in-situ conversion of Ce(III) to Ce(IV) by air. Air flow rate (0-1 L/h), temperature (30-60 °C), liquid-solid ratio (L/S, 12.5-100 g/L), 3REE/NaOH mol ratio (1-1.6) and time (60-240 min) were varied in the study of oxidation and double sulfate conversion. Best oxidation achieved was 93% along near-complete dissociation of double sulfate matrix (52767 ppm Na reduced to 48 ppm Na). After parameter optimization, a larger batch was produced to conduct selective dissolution of REE(III) into HNO3 media, leaving concentrated impure Ce(OH)4 as the end product. Waste printed circuit boards (WPCBs) contain a variety of valuable and hazardous materials. Recycling WPCBs is an important subject not only for environmental protection but also for sustainable development of resources. In this work, a new method combined low-temperature alkaline smelting with liquid-liquid phase separation is proposed to separate and recycle metal mixture in pyrolysis residue of WPCBs of mobile phones. During the low-temperature alkaline smelting process, amphoteric metals Al, Pb, Si, Sn, and Zn are firstly separated and recycled from the metal mixture with the separation rates of 99.5%, 81.6%, 97.8%, 88.4% and 95.7%, respectively. To separate the remaining metal mixture mainly containing elements Cu, Fe, Cr, Ni, Au and Ag, a liquid-liquid phase separation system is designed. As a result, the noble metals Au and Ag are concentrated in the copper-rich substance to form a high-value group, while the elements Ni and Cr distribute in the iron-rich substance. The iron-rich substance can be reused in the liquid-liquid phase separation process. In the super-gravity field, the recycling rates of the metals Au, Ag, Cr and Ni reach 98.1%, 99.8%, 95.6% and 75.4%, respectively. Furthermore, the iron-rich substance can be reused back to the liquid-liquid separation system. The copper-rich substance enriched by the noble metals can be efficiently recovered with low energy consumption and less pollution. This work provides an environmentally friendly and efficient route for separating and recycling the metal mixture in WPCBs. Immune checkpoint inhibitors (ICIs), including those targeting programmed cell death 1 (PD-1), its ligand 1 (PD-L1), or cytotoxic T-lymphocyte antigen 4 (CTLA-4) have become the standard treatment for several malignancies, including lung cancer. However, some patient populations have been routinely excluded from clinical trials or are underrepresented in these studies, as is the case of elderly patients or patients with poor performance status, brain metastases, solid organ transplant, autoimmune diseases, chronic viral infections (such as human immunodeficiency virus or chronic viral hepatitis B and C), or organ dysfunction. Thus, the safety and efficacy of ICIs in these special populations is still unclear, despite regulatory approval of these agents. This review analyzes and summarizes the available information on the efficacy and safety of ICIs in these special populations, focusing on patients with lung cancer. Blockade of programmed cell death ligand-1 (PD-L1) restores T-cell activity and enhances anti-tumor immunity. Screening a phage-displayed peptide library for peptides that selectively bind to PD-L1-overexpressing cells identified two peptides, CLQKTPKQC and CVRARTR (PD-L1Pep-1 and PD-L1Pep-2, respectively) that appeared to block PD-L1. PD-L1Pep-1 and PD-L1Pep-2 preferentially bound to high PD-L1-expressing cells over low PD-L1-expressing cells; binding was further enhanced by interferon-γ, an inducer of PD-L1 expression. Binding affinities of PD-L1Pep-1 and PD-L1Pep-2 were approximately 373 and 281 nM, respectively. Cellular binding of the PD-L1-binding peptides was reduced by silencing PD-L1 gene expression or competition with anti-PD-L1 antibody. PD-L1Pep-1 and PD-L1Pep-2 induced the internalization and downregulated cell surface levels of PD-L1. The PD-L1-binding peptides restored cytokine secretion and T-cell proliferation to cells inhibited by co-culture with tumor cells or culture on PD-L1-coated plates.

Autoři článku: Limlunding7491 (Ladefoged Jonsson)