Leonardriise0732
A ternary catalytic system comprising a chiral aldehyde, a transition metal, and a Lewis acid is rationally designed for the asymmetric α-allylic alkylation reaction of aza-aryl methylamines and π-allylmetal electrophiles. Structural diversity chiral amines bearing carbon-carbon double bonds and aza-heterocycles are produced in moderate to good yields with good to excellent enantioselectivities. These products can be readily converted into other chiral amines without the loss of enantioselectivity. A reasonable reaction mechanism is proposed to illustrate the stereoselective control results.In the search for more sustainable alternatives to the chemical reagents currently used in froth flotation, the present work offers further insights into the behavior of functionalized cellulose nanocrystals as mineral hydrophobization agents. The study corroborates that hexylamine cellulose nanocrystals (HACs) are an efficient collector for the flotation of quartz and also identifies some particular characteristics as a result of their colloidal nature, as opposed to the water-soluble reagents conventionally used. To investigate the individual and collective effects of the frother and HACs on the attachment of particles and air bubbles, an automated contact timer apparatus was used. This induction timer measures particle-bubble attachment probabilities (Patt) without the influence of macroscopic factors present in typical flotation experiments. This allowed the study of the combined influence of nanocellulose and frother concentration on Patt for the first time. SB415286 While HACs readily adsorb on quartz modifying its wettability, the presence of a frother leads to a drastic reduction in Patt up to 70%. The improved recovery of quartz in flotation cells might thus be attributed to froth stabilization by HACs, perhaps acting as a Pickering foam stabilizer. Among the main findings, a tendency of HACs to form mineral agglomerates was identified and further explained using the extended DLVO theory in combination with measured adsorption rates in a quartz crystal microbalance. Therefore, this study distinguishes for the first time the antagonistic effect of frothers on Patt and their synergies with HACs on the stabilization of orthokinetic froths through the hydrophobization mechanism unlike those of typical water-soluble collectors.Benefiting from the maximum atom-utilization efficiency and distinct structural features, single-atom catalysts open a new avenue for the design of more functional catalysts, whereas their bioapplications are still in their infancy. Due to the advantages, platinum single atoms supported by cadmium sulfide nanorods (Pt SAs-CdS) are synthesized to build an ultrasensitive photoelectrochemical (PEC) biosensing platform. With the decoration of Pt SAs, the PEC signal of CdS is significantly boosted. Furthermore, theory calculations indicate the positively charged Pt SAs could change the charge distribution and increase the excited carrier density of CdS. Meanwhile, it also suggests that Cu2+ can severely hinder the photoexcitation and electron-hole separation of CdS. As a proof of concept, prostate-specific antigen is chosen as the target analyte to demonstrate the superiority of the Pt SAs-CdS-based PEC sensing system. As a result, the PEC biosensor based on Pt SAs-CdS exhibits outstanding detection sensitivity and promising applicability.Bright-state models are often applied to "deperturb" Fermi-coupled bands in molecular vibrational spectra, in cases where a harmonically forbidden transition "borrows" intensity from an energetically nearby allowed transition. However, forbidden transitions can also acquire intensity through anharmonic couplings on the potential energy surface ("mechanical anharmonicity") or dipole moment surface ("electrical anharmonicity") that are not accounted for within the bright-state model. In this work, we compare deperturbation shifts obtained by analysis of experimental data with those predicted using the bright-state model, for a series of discrete encapsulated chloride hydrate isotopomers. Predicted band center shifts and Fermi coupling matrix elements obtained using the bright-state model are larger than those estimated from experimental data.Semiconductor nanoplatelets, which offer a compelling combination of the flatness of two-dimensional semiconductors and the inherent richness brought about by colloidal nanostructure synthesis, form an ideal and general testbed to investigate fundamental physical effects related to the dimensionality of semiconductors. With low temperature scanning tunnelling spectroscopy and tight binding calculations, we investigate the conduction band density of states of individual CdSe nanoplatelets. We find an occurrence of peaks instead of the typical steplike function associated with a quantum well, that rule out a free in-plane electron motion, in agreement with the theoretical density of states. This finding, along with the detection of deep trap states located on the edge facets, which also restrict the electron motion, provides a detailed picture of the actual lateral confinement in quantum wells with finite length and width.A nickel-catalyzed reductive cross-coupling between industrial chemical CF3CH2Cl and (hetero)aryl bromides and chlorides has been reported. The reaction is synthetically simple without the preparation of arylmetals and exhibits high functional group tolerance. The utility of this protocol has been demonstrated by the late-stage modification of pharmaceuticals, providing a facile route for medicinal chemistry.We report both an intermolecular C-H amination of arenes to access N-methylanilines and an intramolecular variant for the synthesis of tetrahydroquinolines. A newly developed, highly electrophilic aminating reagent was key for the direct synthesis of unprotected N-methylanilines from simple arenes. The reactions display a broad functional group tolerance and employ catalytic amounts of a benign iron salt under mild reaction conditions.Molecular design, synthesis, and biological evaluation of tubulysin analogues, linker-drugs, and antibody-drug conjugates are described. Among the new discoveries reported is the identification of new potent analogues within the tubulysin family that carry a C11 alkyl ether substituent, rather than the usual ester structural motif at that position, a fact that endows the former with higher plasma stability than that of the latter. Also described herein are X-ray crystallographic analysis studies of two tubulin-tubulysin complexes formed within the α/β interface between two tubulin heterodimers and two highly potent tubulysin analogues, one of which exhibited a different binding mode to the one previously reported for tubulysin M. The X-ray crystallographic analysis-derived new insights into the binding modes of these tubulysin analogues explain their potencies and provide inspiration for further design, synthesis, and biological investigations within this class of antitumor agents. A number of these analogues were conjugated as payloads with appropriate linkers at different sites allowing their attachment onto targeting antibodies for cancer therapies.