Lauesenkronborg2527
The aim of this study was to measure the energy absorbed by composite panels with carbon fiber-reinforced polymer (CFRP) skins and a 5052 aluminum alloy honeycomb core and to compare it to previous research and isotropic material-two 25 × 1.75 mm 1.0562 alloy steel tubes. The panel skins layup consisted of pre-impregnated Pyrofil TR30S 210 gsm 3K 2 × 2 twill oriented in directions 0/90 and -45/45 and having a consolidated thickness of 1 mm or 2 mm. The core consisted of a 15 mm or 20 mm honeycomb oriented along its lengthwise direction. The first test consisted of a three-point bending of specimens supported at a span of 400 mm with a 50 mm radius tubular load applicator in the middle. Second, a perimeter shear test was conducted using a 25 mm diameter punch and a 38 mm diameter hole. The results of the three-point bending test show that the energy absorbed by panels with 1 mm skins was similar to the energy absorbed by the tubes (96 J), which was better than the previously considered panels. In the case of perimeter shear, the average maximum forces for the top and bottom skin were 5.7 kN and 6.6 kN, respectively. For the panel with thicker skins (2 mm), the results were about 2 times higher.Nutrition is a cornerstone in the management of chronic kidney disease (CKD). To limit urea generation and accumulation, a global reduction in protein intake is routinely proposed. However, recent evidence has accumulated on the benefits of plant-based diets and plant-derived proteins without a clear understanding of underlying mechanisms. Particularly the roles of some amino acids (AAs) appear to be either deleterious or beneficial on the progression of CKD and its complications. This review outlines recent data on the role of a low protein intake, the plant nature of proteins, and some specific AAs actions on kidney function and metabolic disorders. We will focus on renal hemodynamics, intestinal microbiota, and the production of uremic toxins. Overall, these mechanistic effects are still poorly understood but deserve special attention to understand why low-protein diets provide clinical benefits and to find potential new therapeutic targets in CKD.Natural products have been a great source for drug leads, due to a vast majority possessing unique chemical structures. Such an example is the protoilludane class of natural products which contain an annulated 5/6/4-ring system and are almost exclusively produced by fungi. They have been reported to possess a diverse range of bioactivities, including antimicrobial, antifungal and cytotoxic properties. In this review, we discuss the isolation, structure elucidation and any reported bioactivities of this compound class, including establishment of stereochemistry and any total syntheses of these natural products. A total of 180 protoilludane natural products, isolated in the last 70 years, from fungi, plant and marine sources are covered, highlighting their structural diversity and potential in drug discovery.Perinatal stroke (PS), occurring between 20 weeks of gestation and 28 days of life, is a leading cause of hemiplegic cerebral palsy (HCP). Hallmarks of HCP are motor and sensory impairments on one side of the body-especially the arm and hand contralateral to the stroke (involved side). HCP is diagnosed months or years after the original brain injury. One effective early intervention for this population is constraint-induced movement therapy (CIMT), where the uninvolved arm is constrained by a mitt or cast, and therapeutic activities are performed with the involved arm. In this preliminary investigation, we used 3D motion capture to measure the spatiotemporal characteristics of pre-reaching upper extremity movements and any changes that occurred when constraint was applied in a real-time laboratory simulation. Participants were N = 14 full-term infants N = six infants with typical development; and N = eight infants with PS (N = three infants with PS were later diagnosed with cerebral palsy (CP)) followed longitudinally from 2 to 6 months of age. We aimed to evaluate the feasibility of using 3D motion capture to identify the differences in the spatiotemporal characteristics of the pre-reaching upper extremity movements between the diagnosis group, involved versus uninvolved side, and with versus and without constraint applied in real time. This would be an excellent application of wearable sensors, allowing some of these measurements to be taken in a clinical or home setting.Glass manufacturing is an energy-intensive process in which oxy-fuel combustion can offer advantages over the traditional air-blown approach. Examples include the reduction of NOx and particulate emissions, improved furnace operations and enhanced heat transfer. This paper presents a one-dimensional mathematical model solving mass, momentum and energy balances for a planar oxygen transport membrane module. The main modelling parameters describing the surface oxygen kinetics and the microstructure morphology of the support are calibrated on experimental data obtained for a 30 μm thick dense La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) membrane layer, supported on a 0.7 mm porous LSCF structure. The model is then used to design and evaluate the performance of an oxygen transport membrane module integrated in a glass melting furnace. Three different oxy-fuel glass furnaces based on oxygen transport membrane and vacuum swing adsorption systems are compared to a reference air-blown unit. The analysis shows that the most efficient membrane-based oxyfuel furnace cuts the energy demand by ~22% as compared to the benchmark air-blown case. A preliminary economic assessment shows that membranes can reduce the overall glass production costs compared to oxyfuel plants based on vacuum swing adsorption technology.Brazil is the leader in poultry meat exports, in which most products are in the form of cuts. This study analyzed the exertion perception of poultry slaughterhouses workers when performing cutting tasks, as well as the influence of knife sharpness on the risk of developing musculoskeletal disorders by Occupational Repetitive Action (OCRA) method. Participants (n = 101) from three slaughterhouses were asked to rate their perceived exertion on the Borg scale during the cutting task when the knife was well and poorly sharpened. The OCRA results showed that the score for cutting with a dull knife was greater (43.57 ± 13.51) than with a sharp knife (23.79 ± 3.10) (p less then 0.001). Consequently, there was a significant increase in the risk level of acquiring upper-limb work-related musculoskeletal disorders (UL-WMSD) by using a "poorly sharpened" knife (29%; p less then 0.001; Borg scale 2-8). Thus, maintaining well-sharpened knives for optimal performance of the cutting task (fewer technical actions) is suggested, as well as including knife sharpening in the standard operating procedure to reduce musculoskeletal disorders.Sugar-sweetened beverage (sugar-SB) consumption is associated with body weight gain. We investigated whether the changes of (Δ) circulating leptin contribute to weight gain and ad libitum food intake in young adults consuming sugar-SB for two weeks. In a parallel, double-blinded, intervention study, participants (n = 131; BMI 18-35 kg/m2; 18-40 years) consumed three beverages/day containing aspartame or 25% energy requirement as glucose, fructose, high fructose corn syrup (HFCS) or sucrose (n = 23-28/group). Body weight, ad libitum food intake and 24-h leptin area under the curve (AUC) were assessed at Week 0 and at the end of Week 2. The Δbody weight was not different among groups (p = 0.092), but the increases in subjects consuming HFCS- (p = 0.0008) and glucose-SB (p = 0.018) were significant compared with Week 0. Subjects consuming sucrose- (+14%, p less then 0.0015), fructose- (+9%, p = 0.015) and HFCS-SB (+8%, p = 0.017) increased energy intake during the ad libitum food intake trial compared with subjects consuming aspartame-SB (-4%, p = 0.0037, effect of SB). Fructose-SB decreased (-14 ng/mL × 24 h, p = 0.0006) and sucrose-SB increased (+25 ng/mL × 24 h, p = 0.025 vs. Week 0; p = 0.0008 vs. fructose-SB) 24-h leptin AUC. The Δad libitum food intake and Δbody weight were not influenced by circulating leptin in young adults consuming sugar-SB for 2 weeks. Studies are needed to determine the mechanisms mediating increased energy intake in subjects consuming sugar-SB.Poly (ADP-ribose) polymerase inhibitor (PARPi, olaparib) impairs the repair of DNA single-strand breaks (SSBs), resulting in double-strand breaks (DSBs) that cannot be repaired efficiently in homologous recombination repair (HRR)-deficient cancers such as BRCA1/2-mutant cancers, leading to synthetic lethality. Despite the efficacy of olaparib in the treatment of BRCA1/2 deficient tumors, PARPi resistance is common. We hypothesized that the combination of olaparib with anticancer agents that disrupt HRR by targeting ataxia telangiectasia and Rad3-related protein (ATR) or checkpoint kinase 1 (CHK1) may be an effective strategy to reverse ovarian cancer resistance to olaparib. Here, we evaluated the effect of olaparib, the ATR inhibitor AZD6738, and the CHK1 inhibitor MK8776 alone and in combination on cell survival, colony formation, replication stress response (RSR) protein expression, DNA damage, and apoptotic changes in BRCA2 mutated (PEO-1) and HRR-proficient BRCA wild-type (SKOV-3 and OV-90) cells. Combined treatment caused the accumulation of DNA DSBs. PARP expression was associated with sensitivity to olaparib or inhibitors of RSR. Synergistic effects were weaker when olaparib was combined with CHK1i and occurred regardless of the BRCA2 status of tumor cells. Because PARPi increases the reliance on ATR/CHK1 for genome stability, the combination of PARPi with ATR inhibition suppressed ovarian cancer cell growth independently of the efficacy of HRR. The present results were obtained at sub-lethal doses, suggesting the potential of these inhibitors as monotherapy as well as in combination with olaparib.Uterine leiomyomas are benign smooth muscle tumors occurring in 70% of women of reproductive age. The majority of leiomyomas harbor one of three well-established genetic changes a hotspot mutation in MED12, overexpression of HMGA2, or biallelic loss of FH. The majority of studies have classified leiomyomas by complex and costly methods, such as whole-genome sequencing, or by combining multiple traditional methods, such as immunohistochemistry and Sanger sequencing. The type of specimens and the amount of resources available often determine the choice. A more universal, cost-effective, and scalable method for classifying leiomyomas is needed. The aim of this study was to evaluate whether RNA sequencing can accurately classify formalin-fixed paraffin-embedded (FFPE) leiomyomas. We performed 3'RNA sequencing with 44 leiomyoma and 5 myometrium FFPE samples, revealing that the samples clustered according to the mutation status of MED12, HMGA2, and FH. Furthermore, we confirmed each subtype in a publicly available fresh frozen dataset. These results indicate that a targeted 3'RNA sequencing panel could serve as a cost-effective and robust tool for stratifying both fresh frozen and FFPE leiomyomas. This study also highlights 3'RNA sequencing as a promising method for studying the abundance of unexploited tissue material that is routinely stored in hospital archives.Erythropoiesis is a highly dynamic process giving rise to red blood cells from hematopoietic stem cells present in the bone marrow. Red blood cells transport oxygen to tissues thanks to the hemoglobin comprised of α- and β-globin chains and of iron-containing hemes. Erythropoiesis is the most iron-consuming process to support hemoglobin production. Iron delivery is mediated via transferrin internalization by the endocytosis of transferrin receptor type 1 (TFR1), one of the most abundant membrane proteins of erythroblasts. A second transferrin receptor-TFR2-associates with the erythropoietin receptor and has been implicated in the regulation of erythropoiesis. In erythroblasts, both transferrin receptors adopt peculiarities such as an erythroid-specific regulation of TFR1 and a trafficking pathway reliant on TFR2 for iron. This review reports both trafficking and signaling functions of these receptors and reassesses the debated role of TFR2 in erythropoiesis in the light of recent findings. Potential therapeutic uses targeting the transferrin-TFR1 axis or TFR2 in hematological disorders are also discussed.Limb length discrepancy (LLD) is a common problem after joint-preserving hip surgeries, hip dysplasia, and hip deformities. Limping, pain, sciatica, paresthesia, and hip instability are common clinical findings and may necessitate limb-lengthening procedures. The study included five patients (two female and three male, mean age of 28 years (20-49; SD 12)) with symptomatic limb length discrepancy greater than 2.5 cm (mean 3.6 cm) after total hip arthroplasty (THA), hip dysplasia, or post-traumatic hip surgery. They underwent either ipsi- or contralateral intramedullary limb-lengthening surgeries using the PRECICE™ telescopic nail. All patients achieved complete bone healing and correction of the pelvic obliquity after intramedullary lengthening. None of the patients had a loss of proximal or distal joint motion. The mean distraction-consolidation time (DCT) was 3.8 months, the distraction index (DI) 0.7 mm/day, the lengthening index (LI) 1.8 months/cm, the consolidation index (CI) 49.2 days/cm, the healing index (HI) 1.1 months/cm, and the modified healing index (HI*) 34 days/cm. Intramedullary limb lengthening after LLD in cases of hip dysplasia, hip deformity, and various kinds of hip surgery is a useful and safe procedure in young patients to achieve equal limb length. No functional impairment of the preceded hip surgery was seen.Phototoxicity of fluoroquinolones is connected with oxidative stress induction. Lomefloxacin (8-halogenated derivative) is considered the most phototoxic fluoroquinolone and moxifloxacin (8-methoxy derivative) the least. Melanin pigment may protect cells from oxidative damage. On the other hand, fluoroquinolone-melanin binding may lead to accumulation of drugs and increase their toxicity to skin. The study aimed to examine the antioxidant defense system status in normal melanocytes treated with lomefloxacin and moxifloxacin and exposed to UV-A radiation. The obtained results demonstrated that UV-A radiation enhanced only the lomefloxacin-induced cytotoxic effect in tested cells. It was found that fluoroquinolones alone and with UV-A radiation decreased superoxide dismutase (SOD) activity and SOD1 expression. UV-A radiation enhanced the impact of moxifloxacin on hydrogen peroxide-scavenging enzymes. In turn, lomefloxacin alone increased the activity and the expression of catalase (CAT) and glutathione peroxidase (GPx), whereas UV-A radiation significantly modified the effects of drugs on these enzymes. Taken together, both analyzed fluoroquinolones induced oxidative stress in melanocytes, however, the molecular and biochemical studies indicated the miscellaneous mechanisms for the tested drugs. The variability in phototoxic potential between lomefloxacin and moxifloxacin may result from different effects on the antioxidant enzymes.Aging is associated with structural and functional changes in the hippocampus, and hippocampal dysfunction represents a risk marker of Alzheimer's disease. Previously, we demonstrated age-related changes in reactive and proactive control in the stop signal task, each quantified by the stop signal reaction time (SSRT) and sequential effect computed as the correlation between the estimated stop signal probability and go trial reaction time. Age was positively correlated with the SSRT, but not with the sequential effect. Here, we explored hippocampal gray matter volume (GMV) and activation to response inhibition and to p(Stop) in healthy adults 18 to 72 years of age. The results showed age-related reduction of right anterior hippocampal activation during stop success vs. go trials, and the hippocampal activities correlated negatively with the SSRT. In contrast, the right posterior hippocampus showed higher age-related responses to p(Stop), but the activities did not correlate with the sequential effect. Further, we observed diminished GMVs of the anterior and posterior hippocampus. However, the GMVs were not related to behavioral performance or regional activities. Together, these findings suggest that hippocampal GMVs and regional activities represent distinct neural markers of cognitive aging, and distinguish the roles of the anterior and posterior hippocampus in age-related changes in cognitive control.Inertial Measurement Units (IMUs) within an everyday consumer smartwatch offer a convenient and low-cost method to monitor the natural behaviour of hospital patients. However, their accuracy at quantifying limb motion, and clinical acceptability, have not yet been demonstrated. To this end we conducted a two-stage study First, we compared the inertial accuracy of wrist-worn IMUs, both research-grade (Xsens MTw Awinda, and Axivity AX3) and consumer-grade (Apple Watch Series 3 and 5), and optical motion tracking (OptiTrack). Given the moderate to strong performance of the consumer-grade sensors, we then evaluated this sensor and surveyed the experiences and attitudes of hospital patients (N = 44) and staff (N = 15) following a clinical test in which patients wore smartwatches for 1.5-24 h in the second study. Results indicate that for acceleration, Xsens is more accurate than the Apple Series 5 and 3 smartwatches and Axivity AX3 (RMSE 1.66 ± 0.12 m·s-2; R2 0.78 ± 0.02; RMSE 2.29 ± 0.09 m·s-2; R2 0.56 ± 0.01; RMSE 2.14 ± 0.09 m·s-2; R2 0.49 ± 0.02; RMSE 4.12 ± 0.18 m·s-2; R2 0.34 ± 0.01 respectively). For angular velocity, Series 5 and 3 smartwatches achieved similar performances against Xsens with RMSE 0.22 ± 0.02 rad·s-1; R2 0.99 ± 0.00; and RMSE 0.18 ± 0.01 rad·s-1; R2 1.00± SE 0.00, respectively. Surveys indicated that in-patients and healthcare professionals strongly agreed that wearable motion sensors are easy to use, comfortable, unobtrusive, suitable for long-term use, and do not cause anxiety or limit daily activities. Our results suggest that consumer smartwatches achieved moderate to strong levels of accuracy compared to laboratory gold-standard and are acceptable for pervasive monitoring of motion/behaviour within hospital settings.Citrus tea is an emerging tea drink produced from tea and the pericarp of citrus, which consumers have increasingly favored due to its potential health effects and unique flavor. This study aimed to simultaneously combine the characteristic volatile fingerprints with the odor activity values (OAVs) of different citrus teas for the first time by headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). Results showed that the establishment of a citrus tea flavor fingerprint based on HS-GC-IMS data can provide an effective means for the rapid identification and traceability of different citrus varieties. Moreover, 68 volatile compounds (OAV > 1) were identified by HS-SPME-GC-MS, which reflected the contribution of aroma compounds to the characteristic flavor of samples. Amongst them, the contribution of linalool with sweet flower fragrance was the highest. Odorants such as decanal, β-lonone, β-ionone, β-myrcene and D-limonene also contributed significantly to all samples. According to principal component analysis, the samples from different citrus teas were significantly separated. Visualization analysis based on Pearson correlation coefficients suggested that the correlation between key compounds was clarified. A comprehensive evaluation of the aroma of citrus tea will guide citrus tea flavor quality control and mass production.Mycobacterium avium subspecies hominissuis (MAH) is an opportunistic intracellular pathogen causing infections in individuals with chronic lung conditions and patients with immune-deficient disorders. The treatment of MAH infections is prolonged and outcomes many times are suboptimal. The reason for the extended treatment is complex and reflects the inability of current antimicrobials to clear diverse phenotypes of MAH quickly, particularly, the subpopulation of susceptible but drug-tolerant bacilli where the persistent fitness to anti-MAH drugs is stimulated and enhanced by the host environmental stresses. In order to enhance the pathogen killing, we need to understand the fundamentals of persistence mechanism and conditions that can initiate the drug-tolerance phenotype in mycobacteria. MAH can influence the intracellular environment through manipulation of the metal concentrations in the phagosome of infected macrophages. While metals play important role and are crucial for many cellular functions, little is known how vacuole elements influence persistence state of MAH during intracellular growth. In this study, we utilized the in vitro model mimicking the metal concentrations and pH of MAH phagosome at 1 h and 24 h post-infection to distinguish if metals encountered in phagosome could act as a trigger factor for persistence phenotype. Antibiotic treatment of metal mix exposed MAH demonstrates that metals of the phagosome environment can enhance the persistence state, and greater number of tolerant bacteria is recovered from the 24 h metal mix when compared to the viable pathogen number in the 1 h metal mix and 7H9 growth control. In addition, bacterial phenotype induced by the 24 h metal mix increases MAH tolerance to macrophage killing in TNF-α and IFN-γ activated cells, confirming presence of persistent MAH in the 24 h metal mix condition. This work shows that the phagosome environment can promote persistence population in MAH, and that the population differs dependent on a concentration of metals.This study aimed to develop an intuitive gait-related motor imagery (MI)-based hybrid brain-computer interface (BCI) controller for a lower-limb exoskeleton and investigate the feasibility of the controller under a practical scenario including stand-up, gait-forward, and sit-down. A filter bank common spatial pattern (FBCSP) and mutual information-based best individual feature (MIBIF) selection were used in the study to decode MI electroencephalogram (EEG) signals and extract a feature matrix as an input to the support vector machine (SVM) classifier. A successive eye-blink switch was sequentially combined with the EEG decoder in operating the lower-limb exoskeleton. Ten subjects demonstrated more than 80% accuracy in both offline (training) and online. All subjects successfully completed a gait task by wearing the lower-limb exoskeleton through the developed real-time BCI controller. The BCI controller achieved a time ratio of 1.45 compared with a manual smartwatch controller. The developed system can potentially be benefit people with neurological disorders who may have difficulties operating manual control.Primary mitochondrial myopathies (PMM) are a group of mitochondrial disorders characterized by a predominant skeletal muscle involvement. The aim of this study was to evaluate whether the biochemical profile determined by Fourier-transform infrared (FTIR) spectroscopic technique would allow to distinguish among patients affected by progressive external ophthalmoplegia (PEO), the most common PMM presentation, oculopharyngeal muscular dystrophy (OPMD), and healthy controls. Thirty-four participants were enrolled in the study. FTIR spectroscopy was found to be a sensitive and specific diagnostic marker for PEO. In particular, FTIR spectroscopy was able to distinguish PEO patients from those affected by OPMD, even in the presence of histological findings similar to mitochondrial myopathy. At the same time, FTIR spectroscopy differentiated single mtDNA deletion and mutations in POLG, the most common nuclear gene associated with mitochondrial diseases, with high sensitivity and specificity. In conclusion, our data suggest that FTIR spectroscopy is a valuable biodiagnostic tool for the differential diagnosis of PEO with a high ability to also distinguish between single mtDNA deletion and mutations in POLG gene based on specific metabolic transitions.The polyphyletic group of black fungi within the Ascomycota (Arthoniomycetes, Dothideomycetes, and Eurotiomycetes) is ubiquitous in natural and anthropogenic habitats. Partly because of their dark, melanin-based pigmentation, black fungi are resistant to stresses including UV- and ionizing-radiation, heat and desiccation, toxic metals, and organic pollutants. Consequently, they are amongst the most stunning extremophiles and poly-extreme-tolerant organisms on Earth. Even though ca. 60 black fungal genomes have been sequenced to date, [mostly in the family Herpotrichiellaceae (Eurotiomycetes)], the class Dothideomycetes that hosts the largest majority of extremophiles has only been sparsely sampled. By sequencing up to 92 species that will become reference genomes, the "Shed light in The daRk lineagES of the fungal tree of life" (STRES) project will cover a broad collection of black fungal diversity spread throughout the Fungal Tree of Life. Interestingly, the STRES project will focus on mostly unsampled genera that display different ecologies and life-styles (e.g., ant- and lichen-associated fungi, rock-inhabiting fungi, etc.). With a resequencing strategy of 10- to 15-fold depth coverage of up to ~550 strains, numerous new reference genomes will be established. To identify metabolites and functional processes, these new genomic resources will be enriched with metabolomics analyses coupled with transcriptomics experiments on selected species under various stress conditions (salinity, dryness, UV radiation, oligotrophy). The data acquired will serve as a reference and foundation for establishing an encyclopedic database for fungal metagenomics as well as the biology, evolution, and ecology of the fungi in extreme environments.This paper presents a novel single-layer dual band-rejection-filter based on Spoof Surface Plasmon Polaritons (SSPPs). The filter consists of an SSPP-based transmission line, as well as six coupled circular ring resonators (CCRRs) etched among ground planes of the center corrugated strip. These resonators are excited by electric-field of the SSPP structure. The added ground on both sides of the strip yields tighter electromagnetic fields and improves the filter performance at lower frequencies. By removing flaring ground in comparison to prevalent SSPP-based constructions, the total size of the filter is significantly decreased, and mode conversion efficiency at the transition from co-planar waveguide (CPW) to the SSPP line is increased. The proposed filter possesses tunable rejection bandwidth, wide stop bands, and a variety of different parameters to adjust the forbidden bands and the filter's cut-off frequency. To demonstrate the filter tunability, the effect of different elements like number (n), width (WR), radius (RR) of CCRRs, and their distance to the SSPP line (yR) are surveyed. Two forbidden bands, located in the X and K bands, are 8.6-11.2 GHz and 20-21.8 GHz. As the proof-of-concept, the proposed filter was fabricated, and a good agreement between the simulation and experiment results was achieved.Major depression disorder (MDD) is the most prevalent psychiatric comorbid condition in cocaine use disorder (CUD). The comorbid MDD might be primary-MDD (CUD-primary-MDD) or cocaine-induced MDD (CUD-induced-MDD), and their accurate diagnoses and treatment is a challenge for improving prognoses. This study aimed to assess the tryptophan/serotonin (Trp/5-HT) system with the acute tryptophan depletion test (ATD), and the kynurenine pathway in subjects with CUD-primary-MDD, CUD-induced-MDD, MDD and healthy controls. The ATD was performed with a randomized, double-blind, crossover, and placebo-controlled design. Markers of enzymatic activity of indoleamine 2,3-dioxygenase/tryptophan 2,3-dioxygenase, kynurenine aminotransferase (KAT) and kynureninase were also established. Following ATD, we observed a decrease in Trp levels in all groups. Comparison between CUD-induced-MDD and MDD revealed significant differences in 5-HT plasma concentrations (512 + 332 ng/mL vs. 107 + 127 ng/mL, p = 0.039) and the Kyn/5-HT ratio (11 + 15 vs. 112 + 136; p = 0.012), whereas there were no differences between CUD-primary-MDD and MDD. Effect size coefficients show a gradient for all targeted markers (d range 0.72-1.67). Results suggest different pathogenesis for CUD-induced-MDD, with lower participation of the tryptophan system, probably more related to other neurotransmitter pathways and accordingly suggesting the need for a different pharmacological treatment approach.Flos Lamii albi has a high biological activity and is widely used in herbal medicine. The aim of the study was to characterize the secretory structures present in Lamium album subsp. album corolla and the location of phenolic compounds. Additionally, we carried out qualitative phytochemical analyses of flavonoids and phenolic acids. Light, fluorescence, and scanning electron microscopy were used to analyze the structure of the floral organs. The main classes of phenolic compounds and their localization were determined histochemically. Phytochemical analyses were performed with high-performance thin-layer chromatography (HPTLC) and high-performance liquid chromatography (HPLC). Six types of glandular trichomes were found which contained flavonoids, phenolic acids, and tannins. The phytochemical studies demonstrated the presence of caffeic, chlorogenic, ferulic, gallic, p-coumaric, protocatechuic, syringic, gentisic, and vanillic phenolic acids as well as rutoside, isoquercetin, and quercetin flavonoids. The corolla in L. album subsp. album has antioxidant properties due to the presence of various polyphenols, as shown by the histo- and phytochemical analyses. The distribution and morphology of trichomes and the content of phenolic compounds in the corolla have taxonomic, pharmacognostic, and practical importance, facilitating the identification of the raw material.Streptococcus pneumoniae is highly pathogenic and causes several mucosal and invasive infections. Due to the rising number of multidrug-resistant (MDR) strains of S. pneumoniae, new antimicrobials with alternative mechanisms of action are urgently needed. In this study, we identified two new Streptococcal phages from the oral microbiome, 23TH and SA01. Their lysins, 23TH_48 and SA01_53, were recombinantly expressed, characterized and tested for their lethality. SA01_53 was found to only lyse its host strain of S. anginosus, while 23TH_48 was found to possess a broader lytic activity beyond its host strain of S. infantis, with several S. pneumoniae isolates sensitive to its lytic activity. 23TH_48 at a concentration of five activity units per mL (U/mL) was found to reduce cell counts of S. pneumoniae DSM 24048 by 4 log10 colony forming units per mL (CFU/mL) within 1 h and effectively prevented and destroyed biofilms of S. pneumoniae R6 at concentrations of 228.8 ng/µL and 14.3 ng/µL, respectively. Given its high lytic activity, 23TH_48 could prove to be a promising candidate to help combat pneumococcal infections.The objective of the study was to evaluate the concentrations of interleukin-1 receptor antagonist (IL-1RA), interleukin-10 (IL-10), serum amyloid A (SAA) and haptoglobin (Hp) in uterine lavage fluid before and after artificial insemination (AI). Based on ultrasound examination, mares were divided into Group 1 (n = 9), no fluid was detected in the uterus during estrus and 7 h after AI; Group 2 (n = 8), no fluid was detected in the uterus during estrus but 7 h after AI fluid was detected in the uterus; Group 3 (n = 8), fluid was detected in the uterus during estrus and also 7 h after AI. In all groups of mares, a significant increase in polymorphonuclear cells (PMN) and a significant increase in IL-1RA and SAA were recorded 7 h after AI. The obtained results show that, regardless of the status of the mare before AI, the endometrial response characterized by PMN influx, and SAA, Hp, IL-1RA and IL-10 production, is similar. The presence of intrauterine fluid during estrus is not connected with PMN influx but can impact uterine IL-1RA production at this time.A sea surface imaging technique for an emergency response using a ready-made frequency modulated continuous wave-synthetic aperture radar (FMCW SAR) system and its experimental results are described in this paper. The optimal range of radiowave incidence angle for sea surface imaging was analyzed by a theoretical scattering model and measurement data, and it was properly applied to the FMCW SAR system by readjusting the delayed-dechirp process. Raw data acquired through flight experiments were reconstructed to SAR image by the range-doppler algorithm. To verify the performance of the reconstructed sea surface image, dual-channel images collected by the configuration of the along-track interferometry were used, and then performance indicators such as signal attenuation, coherence, and phase difference were analyzed. Through this experimental study, it was confirmed that the ready-made FMCW SAR system without a function of the incident angle control can also conduct limited missions for maritime observation. It is possible to be an alternative resource for emergency response, in which the cases are requiring urgent maritime disaster detection and analysis.The aim of this study was to investigate isolated β-lactoglobulin (β-LG) from the whey protein isolate (WPI) solution using the column chromatography with SP Sephadex. The physicochemical characterization (self-association, the pH stability in various salt solutions, the identification of oligomeric forms) of the protein obtained have been carried out. The electrophoretically pure β-LG fraction was obtained at pH 4.8. The fraction was characterized by the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/TOF MS) technique. The use of the HCCA matrix indicated the presence of oligomeric β-LG forms, while the SA and DHB matrices enabled the differentiation of A and B isoforms in the sample. The impact of sodium chloride, potassium chloride, ammonium sulfate, and sodium citrate in dispersion medium on β-LG electrophoretic stability in solution was also studied. Type of the dispersion medium led to the changes in the isoelectric point of protein. Sodium citrate stabilizes protein in comparison to ammonium sulfate. Additionally, the potential of capillary electrophoresis (CE) with UV detection using bare fused capillary to monitor β-LG oligomerization was discussed. Obtained CE data were further compared by the asymmetric flow field flow fractionation coupled with the multi-angle light scattering detector (AF4-MALS). It was shown that the β-LG is a monomer at pH 3.0, dimer at pH 7.0. At pH 5.0 (near the isoelectric point), oligomers with structures from dimeric to octameric are formed. However, the appearance of the oligomers equilibrium is dependent on the concentration of protein. The higher quantity of protein leads to the formation of the octamer. The far UV circular dichroism (CD) spectra carried out at pH 3.0, 5.0, and 7.0 confirmed that β-sheet conformation is dominant at pH 3.0, 5.0, while at pH 7.0, this conformation is approximately in the same quantity as α-helix and random structures.Recently, a new family of the Janus NbSeTe monolayer has exciting development prospects for two-dimensional (2D) asymmetric layered materials that demonstrate outstanding properties for high-performance nanoelectronics and optoelectronics applications. Motivated by the fascinating properties of the Janus monolayer, we have studied the gas sensing properties of the Janus NbSeTe monolayer for CO, CO2, NO, NO2, H2S, and SO2 gas molecules using first-principles calculations that will have eminent application in the field of personal security, protection of the environment, and various other industries. We have calculated the adsorption energies and sensing height from the Janus NbSeTe monolayer surface to the gas molecules to detect the binding strength for these considered toxic gases. In addition, considerable charge transfer between Janus monolayer and gas molecules were calculated to confirm the detection of toxic gases. Due to the presence of asymmetric structures of the Janus NbSeTe monolayer, the projected density of states, charge transfer, binding strength, and transport properties displayed distinct behavior when these toxic gases absorbed at Se- and Te-sites of the Janus monolayer. Based on the ultra-low recovery time in the order of μs for NO and NO2 and ps for CO, CO2, H2S, and SO2 gas molecules in the visible region at room temperature suggest that the Janus monolayer as a better candidate for reusable sensors for gas sensing materials. From the transport properties, it can be observed that there is a significant variation of I-V characteristics and sensitivity of the Janus NbSeTe monolayer before and after adsorbing gas molecules demonstrates the feasibility of NbSeTe material that makes it an ideal material for a high-sensitivity gas sensor.Conventionally, eukaryotic mRNAs were thought to be monocistronic, leading to the translation of a single protein. However, large-scale proteomics have led to a massive identification of proteins translated from mRNAs of alternative ORF (AltORFs), in addition to the predicted proteins issued from the reference ORF or from ncRNAs. These alternative proteins (AltProts) are not represented in the conventional protein databases and this "ghost proteome" was not considered until recently. Some of these proteins are functional and there is growing evidence that they are involved in central functions in physiological and physiopathological context. Based on our experience with AltProts, we were interested in finding out their interaction with the viral protein coming from the SARS-CoV-2 virus, responsible for the 2020 COVID-19 outbreak. Thus, we have scrutinized the recently published data by Krogan and coworkers (2020) on the SARS-CoV-2 interactome with host cells by affinity purification in co-immunoprecipitation (co-IP) in the perspective of drug repurposing. The initial work revealed the interaction between 332 human cellular reference proteins (RefProts) with the 27 viral proteins. Re-interrogation of this data using 23 viral targets and including AltProts, followed by enrichment of the interaction networks, leads to identify 218 RefProts (in common to initial study), plus 56 AltProts involved in 93 interactions. This demonstrates the necessity to take into account the ghost proteome for discovering new therapeutic targets, and establish new therapeutic strategies. Missing the ghost proteome in the drug metabolism and pharmacokinetic (DMPK) drug development pipeline will certainly be a major limitation to the establishment of efficient therapies.Behavioural and genetic evidence shows that the taste system is intimately related to the sensing of nutrients with consequences for poultry nutrition practices. A better understanding of how chickens may sense fat could provide the background for selecting feedstuffs used in poultry feeds. Acid oils have the potential to be economical and sustainable feedstuffs. These fat by-products from the edible oil refining industry possess a similar fatty acid composition to the crude oils but are richer in free fatty acids (FFA). An experiment was conducted to study the effect of FFA content and the unsaturatedsaturated ratio (US) on dietary preferences in hens. Four fat sources were added to a basal diet at an inclusion rate of 6%, determining the experimental diets soybean oil (SO; high US, 5% FFA); soybean acid oil (SA; high US, 50% FFA); palm oil (PO; low US, 5% FFA); and palm fatty acid distillate (PFAD; low US, 50% FFA). The experimental diets were offered in a series of double-choice tests to forty-eight Lohmaness then 0.05). These results suggest that the degree of saturation plays an important role in dietary fat preferences hens prefer predominantly saturated oils even when these are rich in FFA. Furthermore, when presented with a choice between predominantly unsaturated oils, hens prefer feed with a low %FFA. In conclusion, %FFA and the US ratio affected feed preferences in hens. The use of oils with greater preference values may give rise to greater feed palatability, enhancing feed intake at critical stages.In this review, the ever-increasing use of deep eutectic solvents (DES) in microextraction techniques will be discussed, focusing on the reasons needed to replace conventional extraction techniques with greener approaches that follow the principles of green analytical chemistry. The properties of DES will be discussed, pinpointing their exceptional performance and analytical parameters, justifying their current extensive scientific interest. Finally, a variety of applications for commonly used microextraction techniques will be reported.Currently, the number of approved veterinary medicines are limited, and human medications are used off-label. These approved human medications are of too high potencies for a cat or a small dog breed. Therefore, there is a dire demand for smaller doses of veterinary medicines. This study aims to investigate the use of three semi-solid extrusion 3D printers in a pharmacy or animal clinic setting for the extemporaneous manufacturing of prednisolone containing orodispersible films for veterinary use. Orodispersible films with adequate content uniformity and acceptance values as defined by the European Pharmacopoeia were produced with one of the studied printers, namely the Allevi 2 bioprinter. Smooth and flexible films with high mechanical strength, neutral pH, and low moisture content were produced with a high correlation between the prepared design and the obtained drug amount, indicating that the Allevi 2 printer could successfully be used to extemporaneously manufacture personalized doses for animals at the point-of-care.The new coronavirus disease-2019 (COVID-19), which is spreading around the world and threatening people, is easily infecting a large number of people through airborne droplets; moreover, patients with hypertension, diabetes, obesity, and cardiovascular disease are more likely to experience severe conditions. Vascular endothelial dysfunction has been suggested as a common feature of high-risk patients prone to severe COVID-19, and measurement of vascular endothelial function may be recommended for predicting severe conditions in high-risk patients with COVID-19. However, fragmented vascular endothelial glycocalyx (VEGLX) is elevated in COVID-19 patients, suggesting that it may be useful as a prognostic indicator. Although the relationship between VEGLX and severe acute respiratory syndrome coronavirus 2 infections has not been well studied, some investigations into COVID-19 have clarified the relationship between VEGLX and the mechanism that leads to severe conditions. Clarifying the usefulness of VEGLX assessment as a predictive indicator of the development of severe complications is important as a strategy for confronting pandemics caused by new viruses with a high affinity for the vascular endothelium that may recur in the future.Type 2 diabetes mellitus (T2DM) is associated with advanced glycation end product (AGE) enrichment and considered a risk factor for intervertebral disc (IVD) degeneration. We hypothesized that systemic AGE inhibition, achieved using pyridoxamine (PM), attenuates IVD degeneration in T2DM rats. To induce IVD degeneration, lumbar disc injury or sham surgery was performed on Zucker Diabetic Sprague Dawley (ZDSD) or control Sprague Dawley (SD) rats. Post-surgery, IVD-injured ZDSD rats received daily PM dissolved in drinking water or water only. The resulting groups were SD uninjured, SD injured, ZDSD uninjured, ZDSD injured, and ZDSD injured + PM. Levels of blood glycation and disc degeneration were investigated. At week 8 post-surgery, glycated serum protein (GSP) levels were increased in ZDSDs compared to SDs. PM treatment attenuated this increase. Micro-MRI analysis demonstrated IVD dehydration in injured versus uninjured SDs and ZDSDs. In the ZDSD injured + PM group, IVD dehydration was diminished compared to ZDSD injured. AGE levels were decreased and aggrecan levels increased in ZDSD injured + PM versus ZDSD injured rats. Histological and immunohistochemical analyses further supported the beneficial effect of PM. In summary, PM attenuated GSP levels and IVD degeneration processes in ZDSD rats, demonstrating its potential to attenuate IVD degeneration in addition to managing glycemia in T2DM.It is estimated that around 10-15% of the population have problems achieving a pregnancy. Assisted reproduction techniques implemented and enforced by personalized genomic medicine have paved the way for millions of infertile patients to become parents. Nevertheless, having a baby is just the first challenge to overcome in the reproductive journey, the most important is to obtain a healthy baby free of any genetic condition that can be prevented. Prevention of congenital anomalies throughout the lifespan of the patient must be a global health priority. Congenital disorders can be defined as structural or functional anomalies that occur during intrauterine life and can be identified prenatally, at birth, or sometimes may only be detected later during childhood. It is considered a frequent group of disorders, affecting 3-6% of the population, and one of the leading causes of morbidity and mortality. Congenital anomalies can represent up to 30-50% of infant mortality in developed countries. Genetics plays a subsrizon opened by technologies such as next-generation sequencing (NGS), in new strategies, as a genomic precision diagnostic tool to understand the mechanisms underlying genetic conditions during the "reproductive journey".COASY protein-associated neurodegeneration (CoPAN) is a rare but devastating genetic autosomal recessive disorder of inborn error of CoA metabolism, which shares with pantothenate kinase-associated neurodegeneration (PKAN) similar features, such as dystonia, parkinsonian traits, cognitive impairment, axonal neuropathy, and brain iron accumulation. These two disorders are part of the big group of neurodegenerations with brain iron accumulation (NBIA) for which no effective treatment is available at the moment. To date, the lack of a mammalian model, fully recapitulating the human disorder, has prevented the elucidation of pathogenesis and the development of therapeutic approaches. To gain new insights into the mechanisms linking CoA metabolism, iron dyshomeostasis, and neurodegeneration, we generated and characterized the first CoPAN disease mammalian model. Since CoA is a crucial metabolite, constitutive ablation of the Coasy gene is incompatible with life. On the contrary, a conditional neuronal-specific Coasy knock-out mouse model consistently developed a severe early onset neurological phenotype characterized by sensorimotor defects and dystonia-like movements, leading to premature death. For the first time, we highlighted defective brain iron homeostasis, elevation of iron, calcium, and magnesium, together with mitochondrial dysfunction. Surprisingly, total brain CoA levels were unchanged, and no signs of neurodegeneration were present.Prior research has shown that participation in the United States' National School Lunch Program (NSLP) is associated with consuming higher-quality lunches and diets overall, but little is known about differences by income and race/ethnicity. This analysis used 24 h dietary recall data from the School Nutrition and Meal Cost Study to examine how NSLP participation affects the diet quality of students in different income and racial/ethnic subgroups. Diet quality at lunch and over 24 h was assessed using the Healthy Eating Index (HEI)-2010, where higher scores indicate higher-quality intakes. HEI-2010 scores for NSLP participants and nonparticipants in each subgroup were estimated, and two-tailed t-tests were conducted to determine whether participant-nonparticipant differences in scores within each subgroup were statistically significant. NSLP participants' lunches received significantly higher total HEI-2010 scores than those of nonparticipants for lower-income, higher-income, non-Hispanic White, and non-Hispanic Black students, suggesting that participating in the NSLP helps most students consume healthier lunches. These significantly higher total scores for participants' lunch intakes persisted over 24 h for higher-income students and non-Hispanic White students but not for lower-income students or students of other races/ethnicities. For NSLP participants in all subgroups, the nutritional quality of their 24 h intakes was much lower than at lunch, suggesting that the positive influence of the NSLP on their overall diet quality was negatively influenced by foods consumed the rest of the day (outside of lunch).The growing interest in machine learning methods has raised the need for a careful study of their application to the experimental single-particle tracking data. In this paper, we present the differences in the classification of the fractional anomalous diffusion trajectories that arise from the selection of the features used in random forest and gradient boosting algorithms. Comparing two recently used sets of human-engineered attributes with a new one, which was tailor-made for the problem, we show the importance of a thoughtful choice of the features and parameters. We also analyse the influence of alterations of synthetic training data set on the classification results. The trained classifiers are tested on real trajectories of G proteins and their receptors on a plasma membrane.Drought is the largest stress affecting agricultural crops, resulting in substantial reductions in yield. Plant adaptation to water stress is a complex trait involving changes in hormone signaling, physiology, and morphology. Sorghum (Sorghum bicolor (L.) Moench) is a C4 cereal grass; it is an agricultural staple, and it is particularly drought-tolerant. To better understand drought adaptation strategies, we compared the cytosolic- and organelle-enriched protein profiles of leaves from two Sorghum bicolor genotypes, RTx430 and BTx642, with differing preflowering drought tolerances after 8 weeks of growth under water limitation in the field. In agreement with previous findings, we observed significant drought-induced changes in the abundance of multiple heat shock proteins and dehydrins in both genotypes. Interestingly, our data suggest a larger genotype-specific drought response in protein profiles of organelles, while cytosolic responses are largely similar between genotypes. Organelle-enriched proteins whose abundance significantly changed exclusively in the preflowering drought-tolerant genotype RTx430 upon drought stress suggest multiple mechanisms of drought tolerance.