Lambbraun7314
burnetii that produce rough LPS, were similarly tested. NMI was significantly more protective than NMII as a WCV; however, both vaccines exhibited similar reactogenicity. Collectively, our results indicate that, like phase I LPS, the T4BSS is required for full virulence by C. burnetii. Conversely, unlike phase I LPS, the T4BSS is not required for vaccine-induced protection. LPS length does not appear to contribute to reactogenicity while the T4BSS may contribute to this response. NMI ∆dot/icm represents an avirulent phase I strain with full vaccine efficacy, illustrating the potential of genetically modified C. burnetii as improved WCVs.Parkinson's disease (PD) and related synucleinopathies are characterized by chronic neuroinflammation leading to the premise that anti-inflammatory therapies could ameliorate synucleinopathy and associated sequelae. To test this idea, we used recombinant adeno-associated viruses (AAV) to express the anti-inflammatory cytokine, Interleukin (Il)-10, in Line M83 transgenic mice that expresses the PD-associated A53T mutant human α-synuclein (αSyn). Contrary to our expectations, we observed that intraspinal Il-10 expression initiated at birth upregulated microgliosis and led to early death in homozygous M83+/+ mice. We further observed that Il-10 preconditioning led to reduced lifespan in the hemizygous M83+/- mice injected with preformed αSyn aggregates in hindlimb muscles. To determine the mechanistic basis for these adverse effects, we took advantage of the I87A variant Il-10 (vIl-10) that has predominantly immunosuppressive properties. Sustained intraspinal expression of vIl-10 in preformed αSyn-aggregate seeded M83+/- mice resulted in earlier death, accelerated αSyn pathology, pronounced microgliosis, and increased apoptosis compared to control mice. AAV-vIl-10 expression robustly induced p62 and neuronal LC3B accumulation in these mice, indicating that Il-10 signaling mediated preconditioning of the neuraxis can potentially exacerbate αSyn accumulation through autophagy dysfunction in the neurons. Together, our data demonstrate unexpected adverse effects of both Il-10 and its immunosuppressive variant, vIl-10, in a mouse model of PD, highlighting the pleiotropic functions of immune mediators and their complex role in non-cell autonomous signaling in neurodegenerative proteinopathies.RNA-mediated chromatin silencing is central to genome regulation in many organisms. However, how nascent non-coding transcripts regulate chromatin is poorly understood. PEG400 molecular weight Here, through analysis of Arabidopsis FLC, we show that resolution of a nascent-transcript-induced R-loop promotes chromatin silencing. Stabilization of an antisense-induced R-loop at the 3' end of FLC enables an RNA binding protein FCA, with its direct partner FY/WDR33 and other 3'-end processing factors, to polyadenylate the nascent antisense transcript. This clears the R-loop and recruits the chromatin modifiers demethylating H3K4me1. FCA immunoprecipitates with components of the m6A writer complex, and m6A modification affects dynamics of FCA nuclear condensates, and promotes FLC chromatin silencing. This mechanism also targets other loci in the Arabidopsis genome, and consistent with this fca and fy are hypersensitive to a DNA damage-inducing drug. These results show how modulation of R-loop stability by co-transcriptional RNA processing can trigger chromatin silencing.Alzheimer's disease (AD) is a neurodegenerative disorder and is represented by complicated biological mechanisms and complexity of brain tissue. Our understanding of the complicated molecular architecture that contributes to AD progression benefits from performing comprehensive and systemic investigations with multi-layered molecular and biological data from different brain regions. Since recently different independent studies generated various omics data in different brain regions of AD patients, multi-omics data integration can be a useful resource for better comprehensive understanding of AD. Here we present a web platform, ADAS-viewer, that provides researchers with the ability to comprehensively investigate and visualize multi-omics data from multiple brain regions of AD patients. ADAS-viewer offers means to identify functional changes in transcript and exon expression (i.e., alternative splicing) along with associated genetic or epigenetic regulatory effects. Specifically, it integrates genomic, transcriptomic, methylation, and miRNA data collected from seven different brain regions (cerebellum, temporal cortex, dorsolateral prefrontal cortex, frontal pole, inferior frontal gyrus, parahippocampal gyrus, and superior temporal gyrus) across three independent cohort datasets. ADAS-viewer is particularly useful as a web-based application for analyzing and visualizing multi-omics data across multiple brain regions at both transcript and exon level, allowing the identification of candidate biomarkers of Alzheimer's disease.The link between the gut microbiota and social behavior has been demonstrated, however the translational impact of a certain microbiota composition on stable behavioral patterns is yet to be elucidated. Here we employed an established social behavior mouse model of dominance (Dom) or submissiveness (Sub). A comprehensive 16S rRNA gene sequence analysis of Dom and Sub mice revealed a significantly different gut microbiota composition that clearly distinguishes between the two behavioral modes. Sub mice gut microbiota is significantly less diverse than that of Dom mice, and their taxa composition uniquely comprised the genera Mycoplasma and Anaeroplasma of the Tenericutes phylum, in addition to the Rikenellaceae and Clostridiaceae families. Conversely, the gut microbiota of Dom mice includes the genus Prevotella of the Bacteriodetes phylum, significantly less abundant in Sub mice. In addition, Sub mice show lower body weight from the age of 2 weeks and throughout their life span, accompanied with lower epididymis white adipose tissue (eWAT) mass and smaller adipocytes together with substantially elevated expression of inflammation and metabolic-related eWAT adipokines. Finally, fecal microbiota transplantation into germ-free mice show that Sub-transplanted mice acquired Sub microbiota and adopted their behavioral and physiological features, including depressive-like and anti-social behaviors alongside reduced eWAT mass, smaller adipocytes, and a Sub-like eWAT adipokine profile. Our findings demonstrate the critical role of the gut microbiome in determining dominance vs. submissiveness and suggest an association between gut microbiota, the eWAT metabolic and inflammatory profile, and the social behavior mode.