Kumarkenney5180

Z Iurium Wiki

Utilizing the so-called Thorpe scale as a measure of the turbulence outer scale, we propose a physically-based approach for the estimation of Cn2 profiles in the lower atmosphere. This approach only requires coarse-resolution temperature profiles (a.k.a., soundings) as input, yet it has the intrinsic ability to capture layers of high optical turbulence. The prowess of this computationally inexpensive approach is demonstrated by validations against observational data from a field campaign over Mauna Kea, Hawaii.We report on new types of two-component one-dimensional dark solitons (DSs) in a dual-core waveguide model with normal group-velocity dispersion and Kerr nonlinearity in both cores, the coupling between which is also dispersive. In the presence of the dispersive coupling, quiescent DSs supported by the zero-frequency background are always gray, being stable with the out-of-phase background, i.e., for opposite signs of the fields in the cores. In contrast, the background with a nonzero frequency supports quiescent black solitons which may be stable for both out-of-phase and in-phase backgrounds, if the dispersive coupling is sufficiently strong. Only DSs supported by the out-of-phase background admit an extension to the case of nonzero phase mismatch between the cores.We demonstrate a method for making precise measurements of the diameter of a tapered optical fiber with a sub-wavelength diameter waist (an optical nanofiber). The essence of the method is to create a composite photonic crystal cavity by mounting a defect-mode grating on an optical nanofiber. The resultant cavity has a resonance wavelength that is sensitive to the nanofiber's diameter, allowing the diameter to be inferred from optical measurements. This method offers a precise, nondestructive, and in situ way to characterize the nanofiber diameter.We demonstrate broadband supercontinuum generation (SCG) in a dispersion-engineered silicon-germanium waveguide. The 3 cm long waveguide is pumped by femtosecond pulses at 2.4 μm, and the generated supercontinuum extends from 1.45 to 2.79 μm (at the -30  dB point). The broadening is mainly driven by the generation of a dispersive wave in the 1.5-1.8 μm region and soliton fission. The SCG was modeled numerically, and excellent agreement with the experimental results was obtained.Holographic microscopy is an emerging biological technique that provides amplitude and quantitative phase imaging, though the contrast provided by many cell types and organelles is low, and until now no dyes were known that increased contrast. Here we show that the metallocorrole Ga(tpfc)(SO3)2, which has a strong Soret band absorption, increases contrast in both amplitude and phase and facilitates tracking of Escherichia coli with minimal toxicity. The change in phase contrast may be calculated from the dye-absorbance spectrum using the Kramers-Kronig relations, and represents a general principle that may be applied to any dye or cell type. This enables the use of holographic microscopy for all applications in which specific labeling is desired.We report, for the first time to our knowledge, a mode-locked femtosecond CrLiSAF laser initiated with a high-quality monolayer graphene saturable absorber (GSA), synthesized by chemical-vapor deposition. The tight-focusing resonator architecture made it possible to operate the CrLiSAF laser with only two 135 mW, 660 nm low-cost single-mode diode lasers. At a pump power of 270 mW, the laser produced nearly transform-limited 68 fs pulses with an average power of 11.5 mW at 850 nm. The repetition rate was around 132 MHz, corresponding to a pulse energy and peak power of 86 pJ and 1.26 kW, respectively. Once mode locking was initiated with the GSA, stable, uninterrupted femtosecond pulse generation could be sustained for hours. The saturation fluence and the modulation depth of the GSA were further determined to be 28  μJ/cm2 and 0.62%, respectively.We propose an on-chip integrated differential optical microring refractive index sensing platform which leverages laminar flow conditions. Close spacing between a sensing and a reference resonator, and sharing the same microfluidic channel allows the two resonators to experience similar environmental disturbances, such as temperature fluctuations and fluidic-induced transients, achieving reliable and sensitive sensing performance. We obtain a noise floor of 80.0 MHz (0.3 pm) and a bulk refractive index sensitivity of 17.0 THz per refractive index unit (RIU) (64.2 nm/RIU), achieving a limit of detection of 1.4×10(-5) RIU in a 30 min and an 8°C window.We report the generation of transform-limited 4.3-cycle (23 fs) pulses at 1.6 μm from a degenerate doubly resonant optical parametric oscillator (OPO) pumped by a 1 GHz mode-locked Tisapphire laser. A χ(2) nonlinear envelope equation was used to inform the experimental implementation of intracavity group-delay dispersion compensation, resulting in resonant pulses with a 169 nm full width half-maximum spectral bandwidth, close to the bandwidth predicted by theory.Efficient operation of an Nd-doped fiber laser operating in a wavelength-tunable configuration using a volume Bragg grating (VBG) is reported in this Letter. A high-power operation on the 4F3/2-4I9/2 transition of Nd3+ at short wavelengths below 900 nm is demonstrated for the first time in silica fibers. A high-efficiency (47% laser conversion) output power up to 22 W and a narrow linewidth of 0.035 nm are achieved. This configuration is compared with a more conventional fiber laser setup using a bandpass filter and a highly reflective dichroic mirror.A turnkey fiber laser source generating high-quality pulses with a spectral sech shape and Fourier transform-limited duration of order 100 fs widely tunable in the 1.6-2.65 μm range is presented. It is based on Raman soliton self-frequency shifting in the suspended-core microstructured TeO2-WO3-La2O3 glass fiber pumped by a hybrid Er/Tm fiber system. Detailed experimental and theoretical studies, which are in a very good agreement, of nonlinear pulse dynamics in the tellurite fiber with carefully measured and calculated parameters are reported. A quantitatively verified numerical model is used to show Raman soliton shift in the range well beyond 3 μm for increased pump energy.The fiber optical parametric amplifier (FOPA) has been well investigated and widely adopted at the telecommunication window, and outstanding progress has been achieved in areas such as high gain, wide bandwidths, and even flexible gain-spectrum shape. In contrast, a FOPA at the bio-favorable window, 1.0 μm, has been largely underexploited, especially for its relatively limited bandwidth. Here, we demonstrate an all-fiber single-pump FOPA at 1.0 μm with versatile performances, including ultrahigh gain (∼52  dB), wide bandwidth (∼110  nm), and good gain-spectrum flatness (∼3  dB). To showcase the practical applications, the FOPA is utilized to amplify the broadband optical image signal from a spectrally encoded microscopy, yielding a sensitivity enhancement of 47 dB. Thus, it is promising that this all-fiber versatile FOPA works well as an add-on module in boosting sensitivity for existing optical systems at a 1.0 μm window.This Letter demonstrates a new calibration-free 2f wavelength modulation spectroscopy (WMS) technique to measure gas concentration and pressure without the need for laser precharacterization. A 1650-nm laser diode is used for methane concentration and pressure measurements for pressures up to 4 bar and for a modulation index (m) of 2.2. All laser parameters such as the intensity, linear and nonlinear intensity modulation (IM), frequency modulation (FM) characteristics, the phase difference ψ1 between the FM and the linear IM, and the phase difference ψ2 between the FM and the nonlinear IM are accurately estimated in situ and in real time. This technique accounts for variations in these parameters that arise due to scanning of the laser's center wavelength, laser temperature variations, and aging of the laser. The laser is modulated at its phase quadrature frequency at which the linear IM and the FM are orthogonal to each other (ψ1=90°). This ensures that the two linear IM-dependent distorting Fourier components are orthogonal to the detection axis, and the undistorted 2f signal is recovered. This simplifies the simulation and gas parameter-extraction process. Finally, 2f RAM nulling is implemented to remove the significant absorption-independent 2f residual amplitude-modulation (RAM) signal that is seen to cause significant distortion of the 2f signal and detector saturation.We investigate the feasibility of gas-phase pressure measurements using fs/ps rotational CARS. Femtosecond pump and Stokes pulses impulsively prepare a rotational Raman coherence, which is probed by a high-energy 5-ps pulse introduced at a time delay from the Raman preparation. These ultrafast laser pulses are shorter than collisional-dephasing time scales, enabling a new hybrid time- and frequency-domain detection scheme for pressure. Single-laser-shot rotational CARS spectra were recorded from N2 contained in a room-temperature gas cell for pressures from 0.4 to 3 atm and probe delays ranging from 16 to 298 ps. Sensitivity of the accuracy and precision of the pressure data to probe delay was investigated. The technique exhibits superior precision and comparable accuracy to previous laser-diagnostic pressure measurements.We predict analytically and confirm with numerical simulations that intermode dispersion in nanowire waveguide arrays can be tailored through periodic waveguide bending, facilitating flexible spatiotemporal reshaping without breakup of femtosecond pulses. This approach allows simultaneous and independent control of temporal dispersion and spatial diffraction that are often strongly connected in nanophotonic structures.Linearly polarized pumping of a random fiber laser made of a 500-m PM fiber with PM fiber-loop mirror at one fiber end results in generation of linearly polarized radiation at 1.11 μm with the polarization extinction ratio as high as 25 dB at the output power of up to 9.4 W. The absolute optical efficiency of pump-to-Stokes wave conversion reaches 87%, which is close to the quantum limit and sets a record for Raman fiber lasers with random distributed feedback and with a linear cavity as well. Herewith, the output linewidth at high powers tends to saturation at a level of 1.8 nm.We show that it is possible to generate transversely random, diffraction-free/longitudinally invariant vector optical fields. The randomness in transverse polarization distribution complements a previously studied one in intensity of scalar Bessel-type beams, adding another degree of freedom to control these beams. Moreover, we show that the relative transversely random phase distribution is also conserved along the optical axis. Thus, intensity, phase, and polarization of Bessel-type beams can be transversely random/arbitrary while invariant upon propagation. Such fields may find applications in encryption/secure communications, optical trapping, etc.We demonstrate a spectral interferometric method to characterize lateral and angular spatial chirp to optimize intensity localization in spatio-temporally focused ultrafast beams. Interference between two spatially sheared beams in an interferometer will lead to straight fringes if the wavefronts are curved. To produce reference fringes, we delay one arm relative to another in order to measure fringe rotation in the spatially resolved spectral interferogram. With Fourier analysis, we can obtain frequency-resolved divergence. In another arrangement, we spatially flip one beam relative to the other, which allows the frequency-dependent beamlet direction (angular spatial chirp) to be measured. selleckchem Blocking one beam shows the spatial variation of the beamlet position with frequency (i.e., the lateral spatial chirp).

Autoři článku: Kumarkenney5180 (Brink Acosta)