Kroghgriffith4656

Z Iurium Wiki

gingivalis in mice caused mesangial proliferation (p less then 0.05 at days 28a nd 42; p less then 0.01 at days 14 and 56) and IgA deposition (p less then 0.001 at day 42 and 56 after administration). Scanning-electron-microscopic observation revealed that a high-density Electron-Dense Deposit was widely distributed in the mesangial region in the mice kidneys treated with P. gingivalis. These findings suggest that P. gingivalis is involved in the pathogenesis of IgAN.RNA-binding proteins (RBPs) act as posttranscriptional regulators controlling the fate of target mRNAs. Unraveling how RNAs are recognized by RBPs and in turn are assembled into neuronal RNA granules is therefore key to understanding the underlying mechanism. While RNA sequence elements have been extensively characterized, the functional impact of RNA secondary structures is only recently being explored. Here, we show that Staufen2 binds complex, long-ranged RNA hairpins in the 3'-untranslated region (UTR) of its targets. These structures are involved in the assembly of Staufen2 into RNA granules. Furthermore, we provide direct evidence that a defined Rgs4 RNA duplex regulates Staufen2-dependent RNA localization to distal dendrites. Importantly, disrupting the RNA hairpin impairs the observed effects. Finally, we show that these secondary structures differently affect protein expression in neurons. In conclusion, our data reveal the importance of RNA secondary structure in regulating RNA granule assembly, localization and eventually translation. It is therefore tempting to speculate that secondary structures represent an important code for cells to control the intracellular fate of their mRNAs.Ovarian aging is associated with elevated oxidative stress and diminished oocyte developmental competence. We aimed to determine the impact of systemic antioxidant treatment in aged mice. Female outbred CF-1 mice were aged for 9 months prior to an 8-week 45 mg Euterpe oleracea (açaí) daily supplement. The açaí treatment induced a threefold increase in serum antioxidant power (FRAP) compared to both young and aged mice (p less then 0.0001). Compared to young mice, aged mice had fewer oocytes and reduced blastocyst development (p less then 0.0001); açaí did not affect the oocyte numbers, but improved blastocyst formation (p less then 0.05). Additionally, açaí alleviated the aging-related decrease in implantation potential (p less then 0.01). The aged mice showed evidence of elevated ovarian ER stress (increased whole-ovary PDIA4 expression, granulosa cell and oocyte GRP78 expression, and oocyte PDIA4 protein), reduced oocyte mitochondrial quality (higher PRKN activation and mitochondrial DNA oxidative damage), and dysregulated uterine glandular epithelium. Antioxidant intervention was sufficient to lessen these effects of ovarian aging, likely in part by the upregulation of NRF2. We conclude that açaí treatment is a promising strategy to improve ER and mitochondrial function in the ovaries, thereby ameliorating the decreased oocyte competence that occurs with ovarian aging.Loss-of-function mutations in the human vacuolar protein sorting the 13 homolog A (VPS13A) gene cause Chorea-acanthocytosis (ChAc), with selective degeneration of the striatum as the main neuropathologic feature. Very little is known about the VPS13A expression in the brain. The main objective of this work was to assess, for the first time, the spatiotemporal distribution of VPS13A in the mouse brain. We found VPS13A expression present in neurons already in the embryonic stage, with stable levels until adulthood. VPS13A mRNA and protein distributions were similar in the adult mouse brain. We found a widespread VPS13A distribution, with the strongest expression profiles in the pons, hippocampus, and cerebellum. Interestingly, expression was weak in the basal ganglia. VPS13A staining was positive in glutamatergic, GABAergic, and cholinergic neurons, but rarely in glial cells. At the cellular level, VPS13A was mainly located in the soma and neurites, co-localizing with both the endoplasmic reticulum and mitochondria. However, it was not enriched in dendritic spines or the synaptosomal fraction of cortical neurons. In vivo pharmacological modulation of the glutamatergic, dopaminergic or cholinergic systems did not modulate VPS13A concentration in the hippocampus, cerebral cortex, or striatum. These results indicate that VPS13A has remarkable stability in neuronal cells. Understanding the distinct expression pattern of VPS13A can provide relevant information to unravel pathophysiological hallmarks of ChAc.The olfactory organ is an important chemoreceptor in vertebrates. However, the sexual disparities in gene expression patterns in the olfactory organ in fish remain unstudied. Here, we conducted a transcriptome analysis of the olfactory epithelium (OE) of male and female blunt snout bream (Megalobrama amblycephala) to identify the differences. The histological analysis showed that there were 22 leaf-like olfactory lamellaes on one side of the OE of the adult blunt snout bream. The sensory area of OE is enriched with ciliated receptor cells and microvilli receptor cells. The transcriptome analysis showed that only 10 out of 336 olfactory receptor genes (224 ORs, 5 V1Rs, 55 V2Rs, and 52 TAARs) exhibited significant expression differences between males and females, and most of the differentially expressed genes were related to the immune system. We also validated these results using qPCR 10 OR genes and 6 immunity-related genes significantly differed between males and females. The FISH analysis results indicated that the ORs were mainly expressed at the edge of the olfactory lamellae. Collectively, our study reveals that gender is not an important factor influencing the expression of olfactory receptors, but the expression of immune genes varies greatly between the genders in blunt snout bream.Reconstruction of bone due to surgical removal or disease-related bony defects is a clinical challenge. It is known that the immune system exerts positive immunomodulatory effects on tissue repair and regeneration. In this study, we evaluated the in vivo efficacy of autologous neutrophils on bone regeneration using a rabbit calvarial defect model. Methods Twelve rabbits, each with two surgically created calvarial bone defects (10 mm diameter), were randomly divided into two groups; (i) single application of neutrophils (SA-NP) vs. CRT-0105446 in vitro SA-NP control, and (ii) repetitive application of neutrophils (RA-NP) vs. RA-NP control. The animals were euthanized at 4 and 8 weeks post-operatively and the treatment outcomes were evaluated by micro-computed tomography, histology, and histomorphometric analyses. Results The micro-CT analysis showed a significantly higher bone volume fraction (bone volume/total volume) in the neutrophil-treated groups, i.e., median interquartile range (IQR) SA-NP (18) and RA-NP (24), compared with the untreated controls, i.e., SA-NP (7) and RA-NP (14) at 4 weeks (p less then 0.05). Similarly, new bone area fraction (bone area/total area) was significantly higher in neutrophil-treated groups at 4 weeks (p less then 0.05). Both SA-NP and RA-NP had a considerably higher bone volume and bone area at 8 weeks, although the difference was not statistically significant. In addition, immunohistochemical analysis at 8 weeks revealed a higher expression of osteocalcin in both SA-NP and RA-NP groups. Conclusions The present study provides first hand evidence that autologous neutrophils may have a positive effect on promoting new bone formation. Future studies should be performed with a larger sample size in non-human primate models. If proven feasible, this new promising strategy could bring clinical benefits for bone defects to the field of oral and maxillofacial surgery.Activation-induced deaminase (AID) is required for somatic hypermutation in immunoglobulin genes, but also induces off-target mutations. Follicular lymphoma (FL) and chronic lymphocytic leukemia (CLL), the most frequent types of indolent B-cell tumors, are exposed to AID activity during lymphomagenesis. We designed a workflow integrating de novo mutational signatures extraction and fitting of COSMIC (Catalogue Of Somatic Mutations In Cancer) signatures, with tridimensional chromatin conformation data (Hi-C). We applied the workflow to exome sequencing data from lymphoma samples. In 33 FL and 30 CLL samples, 42% and 34% of the contextual mutations could be traced to a known AID motif. We demonstrate that both CLL and FL share mutational processes dominated by spontaneous deamination, failures in DNA repair, and AID activity. The processes had equiproportional distribution across active and nonactive chromatin compartments in CLL. In contrast, canonical AID activity and failures in DNA repair pathways in FL were significantly higher within the active chromatin compartment. Analysis of DNA repair genes revealed a higher prevalence of base excision repair gene mutations (p = 0.02) in FL than CLL. These data indicate that AID activity drives the genetic landscapes of FL and CLL. However, the final result of AID-induced mutagenesis differs between these lymphomas depending on chromatin compartmentalization and mutations in DNA repair pathways.Due to the extensive range of ionic liquids (ILs) used in industry, an efficient recovery method is needed. In this study, the effectiveness of a simultaneous concentration and recovery method was investigated for 1-ethyl-3-methylimidazolium chloride ([Emim]Cl), an IL that was recovered using electrodialysis (ED). The optimal operational parameters for electrodialytic recovery were determined empirically. The variables that were investigated included the concentration of IL, applied voltage, linear flow velocity and the diluate-to-concentrate volume ratio. The recovery of [Emim]Cl, the concentration degree, the [Emim]Cl flux across membranes, the current efficiency, as well as the energy consumption were determined. The results of the experiments confirmed that [Emim]Cl concentration and recovery can be achieved using ED. The highest ED efficiency was obtained when a 2 V electric potential per one membrane pair was applied, using a 2 cm/s linear flow velocity, and by adjusting to 0.2 M IL in the feed solution. By using ED, a 2.35-fold concentration of [Emim]Cl with a recovery of 90.4% could be achieved when the diluate-to-concentrate volume ratio was 2. On the other hand, a 3.35-fold concentration of [Emim]Cl with a recovery of 81.7% could be obtained when the diluate-to-concentrate volume ratio was increased to 5.Alzheimer's disease (AD), an age-dependent, progressive neurodegenerative disorder, is the most common type of dementia, accounting for 50-70% of all dementia cases. Due to the increasing incidence and corresponding socioeconomic burden of dementia, it has rapidly emerged as a challenge to public health worldwide. The characteristics of AD include the development of extracellular amyloid-beta plaques and intracellular neurofibrillary tangles, vascular changes, neuronal inflammation, and progressive brain atrophy. However, the complexity of the biology of AD has hindered progress in elucidating the underlying pathophysiological mechanisms of AD, and the development of effective treatments. MicroRNAs (miRNAs, which are endogenous, noncoding RNAs of approximately 22 nucleotides that function as posttranscriptional regulators of various genes) are attracting attention as powerful tools for studying the mechanisms of diseases, as they are involved in several biological processes and diseases, including AD. AD is a multifactorial disease, and several reports have suggested that miRNAs play an important role in the pathological processes of AD.

Autoři článku: Kroghgriffith4656 (Due Padilla)