Kringpratt2601

Z Iurium Wiki

These data strongly demonstrated that SOX13 is involved in maintaining cancer stem-like properties in HCC cells and plays a critical role in HCC development.Worldwide, colorectal cancer (CRC) is one of the most common cancers and is a leading cause of cancer-related deaths. https://www.selleckchem.com/products/emd-1214063.html Accumulating evidence suggests that probiotics suppress the development of various cancers including CRC. Recently, we reported a Lactobacillus rhamnosus (LR)-derived 8 kDa protein (p8) that displayed anti-cancer properties in CRC cells. However, the precise anti-cancer mechanism of p8 and its target genes has not been fully examined. In the present study, we reveal that p8 leads to apoptotic cells and cleaved PARP1 expression in a mouse xenograft model of CRC. Additionally, we identified Ring finger protein 152 (RNF152) as a putative target of p8 using RNA-sequencing. Furthermore, the expression levels of RNF152 were increased following in vivo and in vitro treatment with p8. We also found that p8 leads to the accumulation of cleaved PARP1 in CRC cells. These results suggest that p8 induces apoptosis via regulation of RNF152, thus inhibiting the development of CRC.Resisting cell death is one of the hallmarks of cancer. Necroptosis is a form of non-caspase dependent necrotic cell death mediated by receptor-interacting protein kinase-1/3 (RIP1/3), which represents another mode of programmed cell death besides apoptosis. RIP3 also acts as an energy metabolism regulator associated with switching cell death from apoptosis to necroptosis. Trichothecin (TCN) is a sesquiterpenoid originating from endophytic fungi and shows potent anti-tumor bioactivity. Our current findings reveal that RIP3 mediates TCN-induced necroptosis through up-regulating PYGL and PDC-E1α to promote mitochondria energy metabolism and ROS production. RIP3 might be involved in sensitizing tumor cells to chemotherapy induced by TCN. Therefore, activating RIP3 to initiate necroptosis contributes to the bioactivity of TCN. Moreover, TCN could be exploited for therapeutic gain through up-regulating RIP3 to sensitize cancer chemotherapy.Accumulating evidence on the role of Follistatin-like protein 1 (FSTL1) in tumorigenesis and cancer progression is conflicting. Nevertheless, the underlying mechanisms by which FSTL1 contributes to gastric cancer (GC) remain unknown. This study shows that FSTL1 was frequently upregulated in primary GC tissues and significantly correlated with infiltrating depth, lymph node metastasis, unfavorable tumor stage and poor prognosis of GC. Down or up-regulation of FSTL1 inhibited or increased, respectively, the proliferation by reducing apoptosis, clonogenicity, migration and invasion of GC cells in vitro. Moreover, the higher expression of FSTL1 promoted subcutaneous xenograft tumor growth and lung/liver tumor metastasis in vivo. Furthermore, we demonstrate that FSTL1 is involved in regulation of the AKT signaling through analyzing databases and experimental results. Mechanistic studies showed that FSTL1 promoted proliferation, migration and invasion in GC, at least partially, by activating AKT via regulating TLR4/CD14. In all, this study highlights the role of the FSTL1-TLR4/CD14-AKT axis, which provided novel insights into the mechanism of growth and metastasis in GC for the first time.Aberrant iron homeostasis is a typical characteristic of Hepatocellular carcinoma (HCC), and perturbation of iron metabolism is an effective strategy for HCC therapy. However, there are few safe and effective targeting agents available in clinical practices. The artemisinin and its derivatives have shown potential anti-cancer activity by disturbing cellular iron homeostasis, but the specific mechanism is still unclear. In this study, we demonstrate that Artesunate (ART), a water-soluble anti-malaria agent in clinical use, can regulate the labile iron pool (LIP) and effectively induce ROS-dependent cell death in multiple HCC cells. Mechanistically, ART increases the LIP by promoting lysosomal degradation of iron-storage protein ferritin through acidizing lysosomes. Then the accumulation of labile iron in the endoplasmic reticulum (ER) promotes excessive reactive oxygen species (ROS) production and severe ER disruption, which leads to cell death. Our results provide a new understanding of how ART modulates iron metabolism in HCC cells at the subcellular level, demonstrate the significance of endoplasmic reticulum as iron-vulnerability of HCC cells. More importantly, our findings suggest ART is a safe and potential anti-HCC agent via disturbing iron homeostasis.The expression of collagen VI in primary ovarian tumors may correlate with tumor grade and response to chemotherapy. We have sought to elucidate the role of collagen VI in promoting ovarian cancer tumor growth and metastasis. Here we examined the effects of collagen VI on ovarian carcinoma stromal progenitor cells (OCSPCs). Epithelial-like OCSPCs (epi-OCSPCs) and mesenchymal-like OCSPCs (msc-OCSPCs) were analyzed by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Differentially expressed genes were integrated with survival-related genes using The Cancer Genome Atlas (TCGA) data and confirmed in our samples. The roles of candidate genes and signaling pathways were further explored. We found that SKOV3/msc-OCSPCs possessed greater migration, invasion, and spheroid formation than SKOV3/epi-OCSPCs (P less then 0.001). Expression of collagen alpha-3 (VI; COL6A3), which encodes collagen VI, was 90-fold higher in msc-OCSPCs than in epi-OCSPCs. Analysis of TCGA data and our samples indicated tathway was blocked using CDK4/6 inhibitor LEE011. Our results suggested that collagen VI regulates the CDK4/6-p-Rb signaling pathway and promotes EOC invasiveness, stemness, and metastasis.Recurrent/metastatic nasopharyngeal carcinoma (NPC) is known for having a poor prognosis due to its unfavorable response to chemoradiotherapy. However, the specific processes involved remain poorly understood. This study focused on the cisplatin-resistance mechanism in NPC to help understand the occurrence of advanced NPC and aims to explore the potential therapeutic target for cisplatin-resistant NPC. Two cisplatin-resistant NPC cell lines, HNE-1/DDP and CNE-2/DDP, were established and the differentially expressed genes (DEGs) between parental and cisplatin-resistance cell lines, filtering from high-throughput sequencing results, were analyzed. Next, the effects of IAP-1 on cisplatin-resistant nasopharyngeal cancer cell proliferation, apoptosis, drug resistance and associated cell signaling were evaluated in vitro and in vitro. From our bioinformatic results, more than 15,000 differentially expressed genes (DEGs) were found between parental and resistant cell lines. Nine related DEGs were found in the classic platinum resistance pathway, three of which (ATM, IAP-1, and IAP-2) also appeared in the top five differentially expressed pathways, with elevated IAP-1 showing the highest fold change.

Autoři článku: Kringpratt2601 (Horowitz Wiggins)