Klemmensenmorgan4263

Z Iurium Wiki

We describe measurements of the thermally activated transitions between fluxoid states of a single isolated superconducting ring. We compare these measurements with theoretical predictions in which all of the relevant parameters are determined via independent characterization of the same ring. This no-free-parameters comparison shows qualitative agreement over a wide range of temperatures. We discuss possible origins for the remaining discrepancies between the data and theory, in particular the choice of model for the superconducting order parameter's damping.In laboratory studies and numerical simulations, we observe clear signatures of unstable time-periodic solutions in a moderately turbulent quasi-two-dimensional flow. We validate the dynamical relevance of such solutions by demonstrating that turbulent flows in both experiment and numerics transiently display time-periodic dynamics when they shadow unstable periodic orbits (UPOs). We show that UPOs we computed are also statistically significant, with turbulent flows spending a sizable fraction of the total time near these solutions. As a result, the average rates of energy input and dissipation for the turbulent flow and frequently visited UPOs differ only by a few percent.We provide an exact study of dynamical correlations for the quantum spin-orbital liquid phases of an SU(2)-symmetric Kitaev honeycomb lattice model. We show that the spin dynamics in this Kugel-Khomskii type model is exactly the density-density correlation function of S=1 fermionic magnons, which could be probed in resonant inelastic x-ray scattering experiments. We predict the characteristic signatures of spin-orbital fractionalization in inelastic scattering experiments and compare them to the ones of the spin-anisotropic Kitaev honeycomb spin liquid. In particular, the resonant inelastic x-ray scattering response shows a characteristic momentum dependence directly related to the dispersion of fermionic excitations. The neutron scattering cross section displays a mixed response of fermionic magnons as well as spin-orbital excitations. The latter has a bandwidth of broad excitations and a vison gap that is three times larger than that of the spin-1=2 Kitaev model.We report experiments that show rapid crystallization of colloids tethered to an oil-water interface in response to laser illumination. This light-induced transition is due to a combination of long-ranged thermophoretic pumping and local optical binding. We show that the flow-induced force on the colloids can be described as the gradient of a potential. The nonequilibrium steady state due to local heating thus admits an effective equilibrium description. The optofluidic manipulation explored in this work opens novel ways to manipulate and assemble colloidal particles.We propose an all-linear-optical scheme to ballistically generate a cluster state for measurement-based topological fault-tolerant quantum computation using hybrid photonic qubits entangled in a continuous-discrete domain. Availability of near-deterministic Bell-state measurements on hybrid qubits is exploited for this purpose. In the presence of photon losses, we show that our scheme leads to a significant enhancement in both tolerable photon-loss rate and resource overheads. More specifically, we report a photon-loss threshold of ∼3.3×10^-3, which is higher than those of known optical schemes under a reasonable error model. Furthermore, resource overheads to achieve logical error rate of 10^-6(10^-15) is estimated to be ∼8.5×10^5(1.7×10^7), which is significantly less by multiple orders of magnitude compared to other reported values in the literature.The emergence of a compressible insulator phase, known as the Bose glass, is characteristic of the interplay of interactions and disorder in correlated Bose fluids. While widely studied in tight-binding models, its observation remains elusive owing to stringent temperature effects. Here we show that this issue may be overcome by using Lieb-Liniger bosons in shallow quasiperiodic potentials. A Bose glass, surrounded by superfluid and Mott phases, is found above a critical potential and for finite interactions. At finite temperature, we show that the melting of the Mott lobes is characteristic of a fractal structure and find that the Bose glass is robust against thermal fluctuations up to temperatures accessible in quantum gases. Our results raise questions about the universality of the Bose glass transition in such shallow quasiperiodic potentials.The creation of disordered hyperuniform materials with extraordinary optical properties (e.g., large complete photonic band gaps) requires a capacity to synthesize large samples that are effectively hyperuniform down to the nanoscale. Motivated by this challenge, we propose a feasible equilibrium fabrication protocol using binary paramagnetic colloidal particles confined in a 2D plane. selleckchem The strong and long-ranged dipolar interaction induced by a tunable magnetic field is free from screening effects that attenuate long-ranged electrostatic interactions in charged colloidal systems. Specifically, we numerically find a family of optimal size ratios that makes the two-phase system effectively hyperuniform. We show that hyperuniformity is a general consequence of low isothermal compressibilities, which makes our protocol suitable to treat more general systems with other long-ranged interactions, dimensionalities, and/or polydispersity. Our methodology paves the way to synthesize large photonic hyperuniform materials that function in the visible to infrared range and hence may accelerate the discovery of novel photonic materials.Precise antineutrino measurements are very sensitive to proper background characterization. We present an improved measurement of the ^13C(α,n)^16O reaction cross section which constitutes significant background for large ν[over ¯] detectors. We greatly improve the precision and accuracy by utilizing a setup that is sensitive to the neutron energies while making measurements of the excited state transitions via secondary γ-ray detection. Our results shows a 54% reduction in the background contributions from the ^16O(3^-,6.13  MeV) state used in the KamLAND analysis.

Autoři článku: Klemmensenmorgan4263 (MacKenzie Witt)