Kleinhermansen4776
A series of distinct BODIPY heterooligomers (dyads, triads, and tetrads) comprising a variable number of typical green BODIPY monomers and a terminal red-emitting styryl-equipped species acting as an energy sink was prepared and subjected to computational and photophysical investigations in solvent media. An ethylene tether between the single monomeric units provides a unique foldameric system, setting the stage for a systematic study of excitation energy transfer processes (EET) on the basis of nonconjugated oscillators. The influence of stabilizing β-ethyl substituents on conformational space and the disorder of site energies and electronic couplings was addressed. In this way both the strong (Frenkel) and the weak (Förster) coupling limit could be accessed within a single system the Frenkel limit within the strongly coupled homooligomeric green donor subunit and the Förster limit at the terminal heterosubstituted ethylene bridge. Femtosecond transient-absorption spectroscopy combined with mixed quantum-classical dynamic simulations demonstrate the limitations of the Förster resonance energy transfer (FRET) theory and provide a consistent framework to elucidate the trend of increasing relaxation lifetimes at higher homologues, revealing one of the fastest excitation energy transfer processes detected to date with a corresponding lifetime of 39 fs.A flexible poly(vinylidene difluoride) (PVDF) composite film embedding LiNbO3 ceramics decorated with silver nanoparticles (Ag NPs) has been synthesized using the solvent casting method. The polar β-phase, Ag NPs, and LiNbO3 phases were confirmed in the composite film using various characterization methods. The composite film showed promising degradation of cationic and anionic dyes using piezocatalysis under ultrasonication. Moreover, this composite film also effectively degraded two model pharmaceutical pollutants named tetracycline and ciprofloxacin using piezocatalysis under ultrasonication. In addition to this, this composite film piezocatalytically removed more than 99.999% of Escherichia coli and 96.65% of Staphylococcus aureus bacteria within 180 min of sonication. The piezocatalytic performance of the PVDF composite film embedding Ag-loaded LiNbO3 in all three applications was superior to that obtained in the case of the PVDF film embedding LiNbO3 and the bare PVDF film. This demonstrates the pronounced effect of Ag NPs in the increase of piezocatalytic activity in the composite film.Chicken ovalbumin (cOVA) has been studied for decades primarily due to the robust genetic and molecular resources that are available for experimental investigations. cOVA is a member of the serpin superfamily of proteins that function as protease inhibitors, although cOVA does not exhibit this activity. As a serpin, cOVA possesses a protease-sensitive reactive center loop that lies adjacent to the OVA 323-339 CD4+ T-cell epitope. We took advantage of the previously described single-substitution variant, OVA R339T, which can undergo the dramatic structural transition observed in serpins, to study how changes in loop size and protein stability influence the processing and presentation of the OVA 323-339 epitope. We observed that the OVA R339T loop insertion increases the stability and protease resistance, resulting in the reduced presentation of the OVA 323-339 epitope in vitro. These findings have implications for the design of more effective vaccines for the treatment of infectious diseases and cancer as well as the development of more robust CD4+ T-cell epitope prediction tools.Because of the problems associated with opioids, drug discovery efforts have been employed to develop opioids with reduced side effects using approaches such as biased opioid agonism, multifunctional opioids, and allosteric modulation of opioid receptors. Receptor targets such as adrenergic, cannabinoid, P2X3 and P2X7, NMDA, serotonin, and sigma, as well as ion channels like the voltage-gated sodium channels Nav1.7 and Nav1.8 have been targeted to develop novel analgesics. Several enzymes, such as soluble epoxide hydrolase, sepiapterin reductase, and MAGL/FAAH, have also been targeted to develop novel analgesics. In this review, old and recent targets involved in pain signaling and compounds acting at these targets are summarized. In addition, strategies employed to reduce side effects, increase potency, and efficacy of opioids are also elaborated. This review should aid in propelling drug discovery efforts to discover novel analgesics.Optimization algorithms play a central role in chemistry since optimization is the computational keystone of most molecular and electronic structure calculations. Herein, we introduce the iterative power algorithm (IPA) for global optimization and a formal proof of convergence for both discrete and continuous global search problems, which is essential for applications in chemistry such as molecular geometry optimization. IPA implements the power iteration method in quantics tensor train (QTT) representations. Analogous to the imaginary time propagation method with infinite mass, IPA starts with an initial probability distribution ρ0(x) and iteratively applies the recurrence relation ρk+1(x) = U(x) ρk(x)/∥Uρk∥L1, where U(x) = e-V(x) is defined in terms of the potential energy surface (PES) V(x) with global minimum at x = x*. Upon convergence, the probability distribution becomes a delta function δ(x - x*), so the global minimum can be obtained as the position expectation value x* = Tr[x δ(x - x*)]. QTT representations of V(x) and ρ(x) are generated by fast adaptive interpolation of multidimensional arrays to bypass the curse of dimensionality and the need to evaluate V(x) for all possible values of x. We illustrate the capabilities of IPA for global search optimization of two multidimensional PESs, including a differentiable model PES of a DNA chain with D = 50 adenine-thymine base pairs, and a discrete non-differentiable potential energy surface, V(p) = mod(N,p), that resolves the prime factors of an integer N, with p in the space of prime numbers 2, 3,..., pmax folded as a d-dimensional 21 × 22 × ··· × 2d tensor. We find that IPA resolves multiple degenerate global minima even when separated by large energy barriers in the highly rugged landscape of the potentials. Therefore, IPA should be of great interest for a wide range of other optimization problems ubiquitous in molecular and electronic structure calculations.Microbial biofilms are a major concern in wound care, implant devices, and organ infections. Biofilms allow higher tolerance to antimicrobial drugs, can impair wound healing, and potentially lead to sepsis. There has been a recent focus on developing novel nanocarrier-based delivery vehicles to enhance the biofilm penetration of traditional antibacterial drugs. However, a feasible in vitro human skin model to mimic the biofilm formation and its treatment for clearance have not yet been reported. This study describes the benefits of using an innovative bacterial biofilm-infected keratinocyte clusteroid model for the first time. It paves a new way for testing innovative nanomedicine delivery systems in a rapid and reproducible way on a realistic human cell-based platform, free of any animal testing. Selleck Ceralasertib Herein, we have developed a novel composite 3D biofilm/human keratinocyte clusteroid coculture platform, which was used to measure biofilm clearance efficiency of nanoparticle (NP)-based therapeutics. We tested thiseveloping and testing of more effective antibacterial agents for clinical applications of antiplaque dental treatments, implants, infection control, and wound dressings.Synthetic motors that consume chemical energy to produce mechanical work offer potential applications in many fields that span from computing to drug delivery and diagnostics. Among the various synthetic motors studied thus far, DNA-based machines offer the greatest programmability and have shown the ability to translocate micrometer-distances in an autonomous manner. DNA motors move by employing a burnt-bridge Brownian ratchet mechanism, where the DNA "legs" hybridize and then destroy complementary nucleic acids immobilized on a surface. We have previously shown that highly multivalent DNA motors that roll offer improved performance compared to bipedal walkers. Here, we use DNA-gold nanoparticle conjugates to investigate and enhance DNA nanomotor performance. Specifically, we tune structural parameters such as DNA leg density, leg span, and nanoparticle anisotropy as well as buffer conditions to enhance motor performance. Both modeling and experiments demonstrate that increasing DNA leg density boosts the speed and processivity of motors, whereas DNA leg span increases processivity and directionality. By taking advantage of label-free imaging of nanomotors, we also uncover Lévy-type motion where motors exhibit bursts of translocation that are punctuated with transient stalling. Dimerized particles also demonstrate more ballistic trajectories confirming a rolling mechanism. Our work shows the fundamental properties that control DNA motor performance and demonstrates optimized motors that can travel multiple micrometers within minutes with speeds of up to 50 nm/s. The performance of these nanoscale motors approaches that of motor proteins that travel at speeds of 100-1000 nm/s, and hence this work can be important in developing protocellular systems as well next generation sensors and diagnostics.We describe the design and synthesis of OFS-1, an Osteoadsorptive Fluorogenic Sentinel imaging probe that is adsorbed by hydroxyapatite (HAp) and bone mineral surfaces, where it generates an external fluorescent signal in response to osteoclast-secreted cathepsin K (Ctsk). The probe consists of a bone-anchoring bisphosphonate moiety connected to a Förster resonance energy transfer (FRET) internally quenched fluorescent (IQF) dye pair, linked by a Ctsk peptide substrate, GHPGGPQG. Key structural features contributing to the effectiveness of OFS-1 were defined by structure-activity relationship (SAR) and modeling studies comparing OFS-1 with two cognates, OFS-2 and OFS-3. In solution or when preadsorbed on HAp, OFS-1 exhibited strong fluorescence when exposed to Ctsk (2.5-20 nM). link2 Time-lapse photomicrographs obtained after seeding human osteoclasts onto HAp-coated well plates containing preadsorbed OFS-1 revealed bright fluorescence at the periphery of resorbing cells. OFS-1 administered systemically detected early osteolysis colocalized with orthotopic engraftment of RPMI-8226-Luc human multiple myeloma cells at a metastatic skeletal site in a humanized mouse model. OFS-1 is thus a promising new imaging tool for detecting abnormal bone resorption.Large amounts of food are wasted during the food supply chain. This loss is in part due to consumer confusion over dates on food packages that can indicate a variety of quality indicators in the product (e.g., expiration date, "best by" date, "sell by" dates, etc.). To reduce this food loss, much research has been focused on the films that offer simple and easily manipulated indication systems to detect food spoilage. However, these materials are usually hydrophilic biopolymers that can detect the food spoilage in a wide pH range but do not provide highly sensitive real-time measurements. In this work, a glycerol-based nanocomposite core-shell latex film was synthesized to create a responsive packaging material that can provide real-time pH detection of food with high sensitivity. First, the pH-responsive dendrimer comonomer was synthesized from glycerol and diamine. link3 Then, the nanoencapsulation polymerization process via miniemulsion was conducted to form a core-shell structure with tunable nanoshell thickness for a sensible pH-responsive release ( less then 0.