Kellermathis5647

Z Iurium Wiki

Issue (2) is addressed by replacing coherence between the low-frequency and high-frequency components in a standard PAC estimator with multitaper partial coherence, while issue (3) is addressed with a physical argument regarding meaningful neural oscillation. Finally, asymptotic statistical assessment of the multitaper estimator is introduced to address issue (4).Main results.Multitaper estimates of PAC are introduced. Their efficacy is demonstrated in simulation and on human intracranial recordings obtained from epileptic patients.Significance.This work facilitates a more informative statistical assessment of PAC, a phenomena exhibited by many neural systems, and provides a basis upon which further nonparametric multitaper-related methods can be developed.Chiral growth exists prevalently in natural materials. The mechanism underlying the formation of chiral morphologies in biological and man-made materials has been an important issue of both theoretical and technological interest. In this paper, an elastic rod model taking into account chiral microstructures is developed to investigate the formation of chiral morphologies of biological materials. The curvature and twist of chiral shapes are investigated with this model using the variational method of energy. The result shows the misfit of chirality of two-layer structured biological materials may induce various chiral morphologies, such as helices and twisting belts. Furthermore, it was found that cooperative or competitive interactions between anisotropic elasticity and chirality can also lead to the formation of chiral morphologies, and the fibre orientation angles and chiral parameters are the determining factors to the shape, size and handedness of chiral morphologies. This work is expected to shed new light on the physical mechanisms of the formation of various chiral morphologies in the biological world and provide useful guidance for the design of deformation driving and shape control of soft robots and machines.Adding nanoparticles in a drilling fluid can aid in the sealing of the nanopores in the borehole wall rock and the mud cake; in this way, the filtrate loss of the drilling fluid can be reduced and the borehole wall is stabilized. In this work, the spectrophotometric method was used to study the effect of dispersants on calcium carbonate nanoparticles. The best dispersion effect was achieved at cetyltrimethyl ammonium bromide (CTAB) concentration of 4 wt%, dispersing time of 45 min, pH value of 8 and stirring speed of 900 rpm. The structure analysis showed that the adsorption layer was formed on the surface of calcium carbonate nanoparticles after CTAB modification, and no new crystalline compounds appeared. Under these optimized dispersing conditions, aggregation was prevented as manifested by the dramatically decreased average particle size of calcium carbonate nanoparticles while the surface hydrophilicity and Zeta potential of calcium carbonate nanoparticles both increased. Furthermore, we showed that a drilling fluid incorporating such well dispersed calcium carbonate nanoparticles exhibit decreased filter loss and thus better performance in sealing compared to the calcium carbonate nanoparticles without dispersants.In the present work, Pd/rGO and PdZrO2/rGO nanostructures were synthesized in a single step by hydrothermal method. Synthesized nanostructures containing 20 wt% Pd nanoparticles were characterized and approved using Fourier-transform infrared spectroscopy, x-ray diffraction, field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, and transmission electron microscopy techniques. The performance of Pd and PdZrO2hybridized with rGO as catalysts were investigated and compared in the process of hydrogen production by water electrolysis and also in the process of electricity generation by methanol oxidation in the fuel cell. The activity and stability of synthetic nanocatalysts were evaluated using cyclic voltammetry, LSV, and chronoamperometry. The results showed that the presence of ZrO2in the nanostructure increases the current density and reduces the overvoltage of the catalytic process. For methanol oxidation reaction, PdZrO2/rGO catalyst displays 92 mA cm-2current density in alkaline media. For hydrogen evolution reaction, the Tafel slope of 52 mV dec-1and overpotential of -0.198 V at the current density of 10 mA cm-2were obtained in alkaline media. Also, due to high stability, this catalyst can be recommended as an optimal catalyst for industrial processes.Trapping/separating bio-entities via magnetic field gradients created a vast number of possibilities to develop biosensors for the early detection of diseases without the need for expensive equipment or physician/lab technicians. Thus, opening a window for at-home disposable rapid test kits. In the scope of the current work, an innovative and cost-effective technique to form well-organized arrays of Nd-Fe-B patterns was successfully developed. High aspect ratio Nd-Fe-B flakes were synthesized by surfactant-assisted ball milling technique. Nd-Fe-B flakes were distributed and patterned into a PDMS matrix by the aforementioned technique. A microfluidic channel was integrated on the fabricated Nd-Fe-B/PDMS patch with a high magnetic field gradient to form a microfluidic device. Fe nanoparticles, suspended in hexane, were flowed through the microfluidic channel, and trapping of the magnetic nanoparticles was observed. More experiments would be needed to quantitatively study efficiency. Ergo, the microfluidic device with high trapping efficiency was developed. The established technique has the potential to outperform the precedents in trapping efficiency, cost, and ease of production. The developed device could be integrated into disposable test kits for the early detection of various diseases.Hydrogen has been considered as one of the most promising alternative energy source to solve the future energy demands due to its high energy capacity and emission-free character. The generation of hydrogen from non-fossil sources is necessary for the sustainable development of human life on this planet. The hydrolysis of sodium borohydride can quickly produce a large amount of hydrogenin situand on-demand in the presence of the catalyst, which can be used as an alternative energy source. So, it is crucial to fabricate the highly efficient, robust, and economical catalyst for the production of hydrogen via hydrolysis of sodium borohydride. Herein, a facile and efficient approach for the synthesis of metal-functionalized reduced graphene oxide for the production of hydrogen at room temperature was used. Moreover, the synthesized catalyst has also been tested in the field of environmental catalysis for the reduction of toxic 4-nitrophenol to valuable 4-aminophenol in the presence of sodium borohydride. The enhanced activity of prepared metal-functionalized reduced graphene oxide is ascribed to a strong affinity between Fe-NXand reduced graphene oxide which facilitates electron transfer as well as synergistic effect. Overall, this work presents a crucial procedure for green chemistry reactions when a carbonaceous material is selected as a catalyst.Fluorescence guided surgery (FGS) is an imaging technique that allows the surgeon to visualise different structures and types of tissue during a surgical procedure that may not be as visible under white light conditions. Due to the many potential advantages of fluorescence guided surgery compared to more traditional clinical imaging techniques such as its higher contrast and sensitivity, less subjective use, and ease of instrument operation, the research interest in fluorescence guided surgery continues to grow over various key aspects such as fluorescent probe development and surgical system development as well as its potential clinical applications. This review looks to summarise some of the emerging opportunities and developments that have already been made in fluorescence guided surgery in recent years while highlighting its advantages as well as limitations that need to be overcome in order to utilise the full potential of fluorescence within the surgical environment.Blue phosphorene (BlueP) is a novel two-dimensional material that shares properties with black phosphorene and is potentially even more interesting for opto-electronic applications because of its layer dependent wide band gap of ≈ 2 - 3 eV and superior carrier mobility. It was first fabricated on Au(111), where, however, a network consisting of BlueP subunits and Au-linker atoms is formed. The physical properties of such an arrangement strongly differ from a freestanding BlueP monolayer. Here, we report on the growth of epitaxial BlueP on the Au(100) surface, which is an interesting alternative when aiming at quasi-freestanding BlueP domains. We find two different phosphorus phases by means of scanning tunneling microscopy (STM) and distortion-corrected low-energy electron diffraction (LEED). In the low coverage regime, we observe a commensurate (2x2) phase, whereas for higher coverage, a nearly hexagonal structure is formed. For the latter, the lattice parameters measured via atomically resolved scanning tunneling hydrogen microscopy (STHM) closely resemble those of freestanding BlueP, and the typical height modulation of the phosphorus atoms is verified in our layers by means of X-ray photoelectron diffraction (XPD). We further analyze the chemical and electronic properties of these films by means of X-ray and [angle resolved] ultraviolet photoelectron spectroscopy (XPS and [AR]UPS).

Racial disparities in breast cancer mortality in the United States are well documented. Non-Hispanic Black (NHB) women are more likely to die of their disease than their non-Hispanic White (NHW) counterparts. The disparity is most pronounced among women diagnosed with prognostically favorable tumors, which may result in part from variations in their receipt of guideline care. In this study, we sought to estimate the effect of guideline-concordant care (GCC) on prognosis, and to evaluate whether receipt of GCC modified racial disparities in breast cancer mortality.

Using the Georgia Cancer Registry, we identified 2,784 NHB and 4,262 NHW women diagnosed with a stage I-III first primary breast cancer in the metropolitan Atlanta area, Georgia, between 2010 and 2014. Women were included if they received surgery and information on their breast tumor characteristics was available; all others were excluded. Receipt of recommended therapies (chemotherapy, radiotherapy, endocrine therapy, and anti-HER2 therapy) as y between Black and White patients persisted across the strata of GCC.

Chemotherapy-induced febrile neutropenia (FN) is prevented or minimized with granulocyte colony-stimulating factors (G-CSFs). Several G-CSF biosimilars are approved in the United States. read more The Biologics and Biosimilars Collective Intelligence Consortium (BBCIC) is a nonprofit initiative whose objective is to provide scientific evidence on real-world use and comparative safety and effectiveness of biologics and biosimilars using the BBCIC distributed research network (DRN).

We describe real-world G-CSF use in patients with breast or lung cancer receiving first-cycle chemotherapy associated with high FN risk. We assessed hospitalizations for FN, availability of absolute neutrophil counts, and G-CSF-induced adverse events to inform future observational comparative effectiveness studies of G-CSF reference products and their biosimilars. A descriptive analysis of 5 participating national health insurance plans was conducted within the BBCIC DRN.

A total of 57,725 patients who received at least one G-CSF dose were included.

Autoři článku: Kellermathis5647 (Salling Marcher)