Kearnsbjerring4391
To spatially control biochemical functions at specific sites within a genome, we have engineered a synthetic switch that activates when bound to its DNA target site. The system uses two CRISPR-Cas complexes to colocalize components of a de novo-designed protein switch (Co-LOCKR) to adjacent sites in the genome. Colocalization triggers a conformational change in the switch from an inactive closed state to an active open state with an exposed functional peptide. We prototype the system in yeast and demonstrate that DNA binding triggers activation of the switch, recruitment of a transcription factor, and expression of a downstream reporter gene. This DNA-triggered Co-LOCKR switch provides a platform to engineer sophisticated functions that should only be executed at a specific target site within the genome, with potential applications in a wide range of synthetic systems including epigenetic regulation, imaging, and genetic logic circuits.This study investigated the interaction between N-acetyl-l-cysteine (NAC) and ovalbumin (OVA) using multispectroscopic technology, molecular docking, and quartz crystal microbalance with dissipation (QCM-D). Fluorescence intensity and UV absorption of OVA were decreased substantially upon the addition of NAC. The calculated Kq values were obtained at 298, 304, and 310 K for 13.48, 15.59, and 17.50 (× 1012 L mol-1), respectively, suggesting that the static quenching was dominated. Thermodynamic parameters such as ΔH (-150.58 kJ mol-1), ΔS (-433.51 J mol-1 K-1), and ΔG values (-21.39 kJ mol-1), combined with molecular docking and QCM-D data, showed that the interaction was spontaneous and van der Waals and hydrogen bonding were identified as the main driving forces. FTIR and CD results showed that the α-helix content of OVA increased from 2.8 to 22.9%, and the β-sheet decreased from 0.2 to 21.9% in the presence of 5 and 10 μM NAC, respectively, compared to the pure OVA, respectively.The effects of pharmaceuticals as emerging contaminants in soil on the gut microbiome and antibiotic resistome in nontarget soil fauna are largely elusive. In this study, we explored the composition of the bacterial community and the presence of antibiotic resistance genes (ARGs) in the gut of the model soil collembolan (Folsomia candida) upon antiepileptic drug carbamazepine (CBZ) and antibiotic tetracycline (TC) exposure. Results showed that, individually or in combination, exposure to TC or CBZ significantly altered the gut community structure of F. candida, causing some enrichment of the bacteria associated with xenobiotic metabolism, such as Arthrobacter, Achromobacter, Gordonia, and Shinella. More importantly, oral exposure to the nonantibiotic drug CBZ enhanced the abundance and diversity of ARGs in the gut of F. candida, especially for the beta-lactams and multidrug resistance genes. Our results revealed that the most likely hosts of ARGs in the gut of F. candida were Proteobacteria and Actinobacteria. The significant positive correlation between mobile genetic elements (MGEs) and ARGs indicated the potential risk of ARGs transmission in the gut of F. Dibutyryl-cAMP molecular weight candida. Overall, the nonantibiotic CBZ is likely to disturb the gut microbiota of nontarget soil fauna such as collembolans, thereby enhancing the dissemination of ARGs.The rational combination of natural molecules is expected to provide new soft material building blocks. Herein, a rosin-based amino acid surfactant was synthesized using dehydroabietic acid and l-serine as the starting materials (denoted as R-6-Ser). Supramolecular hydrogels were formed when β-cyclodextrin (β-CD) was mixed with R-6-Ser at molar ratios of over 0.51 and above certain concentrations. The hydrogels were investigated using rheometry, small-angle X-ray scattering, CD spectroscopy, and cryo-transmission electron microscopy (cryo-TEM). The β-CD associated with the isopropyl benzyl group of the dehydroabietic acid unit in R-6-Ser and formed R-6-Ser@β-CD complexes. The complexes and R-6-Ser self-assembled to form elongated right-handed rigid fibers with a diameter of approximately 7-8 nm, which were responsible for the elasticity of the hydrogels. This work demonstrated the feasibility of preparing supramolecular hydrogels from a diterpenoid-based surfactant and β-CD and provides a new means of utilizing the secretions of pine trees.In this study, development of the gemini gallate (GG) interfacial antioxidant for oil in water (O/W) emulsion was performed employing Steglich esterification with gallic acid and dodecyl gemini chains through a prepacked column and peristaltic pump-based purification system. The structural identity and purity of the prepared GG and monogallate (MG) were confirmed by NMR, Fourier transform infrared spectroscopy, and high-performance liquid chromatography-mass spectrometry. Further evaluation revealed that the GG possessed excellent radical scavenging activity and superior antioxidant activity in an O/W emulsion relative to the MG, especially under the condition of a reduced amount of the emulsifier. Microscopic investigation by a fluorescent probe and transmission electron microscopy (TEM) unveiled that the extraordinary antioxidant performance in the O/W emulsion was presumably attributed to preferable interfacial location because of the unique gemini molecular architecture. The superior antioxidant activity of the gemini antioxidant holds great promise for antioxidation in O/W emulsions.Nanoparticles (NPs) can form a protein corona (PC) with proteins in biological fluids. We examined whether starch nanoparticles (SNPs) form a PC and interact with digestive enzymes in simulated gastric and intestinal fluids. We investigated the adsorption of pepsin and trypsin on unmodified, carboxyl-, and amino-modified SNPs (SNPs, COOH-SNPs, and NH2-SNPs, respectively). Quartz crystal microbalance data showed that a tight and irreversible pepsin corona formed on the NH2-SNPs, pepsin had little or no binding to the SNPs and COOH-SNPs, and trypsin had weak binding to all three kinds of NPs. Dynamic light scattering data showed that pepsin significantly increased the size of the NH2-SNPs from 120 ± 2.6 to 203 ± 12.2 nm and decreased their surface potential from 23.2 ± 1.0 to 12.7 ± 0.2 mV. NH2-SNPs could induce the fluorescence quenching of pepsin and change its secondary structures without affecting its activity.