Kearneycharles6485
A comparative study of polyaniline (PANI) and poly(N-methylaniline) (PNMA) has been performed by means of Raman spectroelectrochemical technique at 633 nm and 785 nm laser line excitations. momordin-Ic The excitation wavelengths used fall into a resonance with the blue colored semi- and full-oxidized forms of these conducting polymers. The dependence of Raman features on electrode potential and solution acidity was studied, and relative content of polaronic and bipolaronic states was evaluated. In an acidic solution, the semioxidized emeraldine form of either PANI or PNMA exists in equilibrium between their polaronic and bipolaronic states. In a neutral or even slightly alkaline solution, this equilibrium for PANI shifts to bipolaron state, resulting in loss of its conductance. For PNMA, however, the relative content of polaron state appears high enough even in pH-neutral soulions, thus determining a higher conductivity of PNMA in pH-neutral environment as compared to that of PANI. A mechanistic interpretation for this, based on differences in the chemical structures of these polymers, is also presented.Salvianolic acids have a special synergic effect on panax notoginsenosides in acute myocardial infarction (AMI) and have been developed into a new drug as Danqi Tongmai Tablet (DQTT). To explore candidate targets and mechanisms of DQTT on AMI, a network pharmacology-based analysis was performed on absorbed prototype compounds of DQTT in rat plasma. Target prediction from network analysis indicated that the arachidonic acid pathway might contribute to the therapeutic effects of DQTT on AMI, and the regulatory effects on cyclooxygenase (COX) and lipoxygenase (LOX) were validated using an oxygen-glucose deprivation/reoxygenation model established on H9c2 cardiomyocytes. To further explore the action mechanisms of DQTT, 38 oxylipins were quantitatively analyzed among high, medium, and low doses of DQTT using a rat AMI model with an ultra high performance liquid chromatograph coupled with a triple quadrupole mass spectrometry (UHPLC-QqQ/MS) detection system. As attenuation was observed in AMI with DQTT treatment, the perturbed arachidonic acid metabolome was partly restored in a dose-dependent fashion with a significant elevation of anti-inflammatory metabolites, while pro-inflammatory lipids were decreased. Cytokine array analysis also supported the anti-inflammatory effects of DQTT, as significant down-regulation of pro-inflammatory cytokines was observed. The analysis of ischemic heart tissues demonstrated that COX and LOX, the inflammation-induced catalytic enzymes of arachidonic acid metabolism, were inhibited on both gene expression and protein level. These results confirmed that DQTT could restore the arachidonic acid metabolome to maintain an anti-inflammatory profile against the ischemic tissue injury and support that DQTT can be a promising medicinal therapy against AMI.Chaos and Noise are ubiquitous in the Brain. Inspired by the chaotic firing of neurons and the constructive role of noise in neuronal models, we for the first time connect chaos, noise and learning. In this paper, we demonstrate Stochastic Resonance (SR) phenomenon in Neurochaos Learning (NL). SR manifests at the level of a single neuron of NL and enables efficient subthreshold signal detection. Furthermore, SR is shown to occur in single and multiple neuronal NL architecture for classification tasks - both on simulated and real-world spoken digit datasets, and in architectures with 1D chaotic maps as well as Hindmarsh-Rose spiking neurons. Intermediate levels of noise in neurochaos learning enable peak performance in classification tasks thus highlighting the role of SR in AI applications, especially in brain inspired learning architectures.Bivalves are the focus of experimental research as they can filtrate a broad size range of microplastics (MPs) with negative consequences for their physiology. Studies use a range of MP shapes, materials, sizes and concentrations raising the question on whether these reflect environmental observations. We review experimental studies on the effects of MPs on marine bivalves and contrast the MP characteristics used with corresponding data from the environment. Mussels were the most common bivalve across experiments which reflect their high abundance and broad distribution in the field. Although fibres are the dominant shape of MPs in coastal systems, most studies focus on spherules and beads, and MP concentrations are often orders of magnitude higher than environmental levels. For higher relevance of experimental findings we recommend that maximum experimental concentrations of MPs are in the range of 100-1000 particles/L, that there is more focus on microfibers and that concentration is reported in particles/volume.Biodiversity plays a key role for our planet by buffering ongoing and future changes in environmental conditions. We tested if canopy-forming algae enhancing biodiversity (CEB) in a Mediterranean intertidal reef ecological community could alleviate the effect of stressors (heat waves and pollution from sewage) on community metabolic rates (as expressed by oxygen consumption) used as a proxy of community functioning. CEB exerted a buffering effect related to the properties of stressor physical-pulsing (heat wave) and chronic-trophic (sewage). After a simulated heat wave, CEB was effective in buffering the impacts of detrimental temperatures on the functioning of the community. In reefs exposed to chronic sewage effluents, benefits derived from CEB were less evident, which is likely due to the stressor's contextual action. The results support the hypothesis that ecological responses depend on stressor typology acting at local level and provide insights for improving management measures to mitigate anthropogenic disturbance.Through the application of the Water Pollution Emergency Response System (WPERS) in the Changjiang Estuary, it was found that tidal flats significantly affect the trajectory of an oil film, and the deposition of the oil film on tidal flats is remarkable. In this study, the Estuarine Oil Spill Model (EOSM) was developed to simulate the process of the oil film landing on tidal flats. The Lagrangian particle algorithm and oil fate experience algorithms were adopted. An algorithm for generating dynamic shorelines was also involved. Compared to the oil spill algorithm without wet-dry functionality, the spatial distribution of the oil film deposition simulated in the EOSM better matched the reanalysis data of the satellite remote sensing image. This indicated that the dynamic wet-dry switch phenomenon of tidal flats could be involved in the simulation of offshore oil spills to improve the accuracy of accident prediction and ecological loss assessment. PLAIN LANGUAGE SUMMARY On December 30th, 2012, a vessel carrying 400 tons of heavy oil sank in the Changjiang Estuary, China. The heavy oil leaked at around 4 am the next day. In this study, a new oil spill model was developed to simulate the process of an oil film landing on land and tidal flats. An algorithm for generating the dynamic shorelines in an oil spill simulation was adapted for the wet-dry switch of tidal flats. The landing distribution of the oil film in this new model was well matched to the satellite image for this accident. This indicated that the dynamic wet-dry switch phenomenon of tidal flats could be involved in the simulation of oil spills offshore, to improve the accuracy of accident prediction and ecological loss assessment. The research results could provide some new ideas for the development of offshore oil spill simulation technology.Mercury (Hg) is a well-known toxicant which enters the marine environment by both natural and anthropogenic sources. Consumption of fish and other seafood that contain methylmercury (MeHg) is a leading source of Hg exposure in humans. Considerable efforts have been made to mitigate the Hg presence and reduce its risks to humans. In this review the acknowledged methods of mitigation are summarized such as regulation and maximum allowable limits, and culinary treatments. In addition, selected industrial level trials are reviewed, and studies on Hg intoxication and the protective effects of the essential trace element, selenium (Se), are discussed. In view of the available literature, Hg reduction in fish and other seafood on a large industrial scale still is largely unsuccessful. Hence, more research and further attempts are necessary in order to better mitigate the Hg problem in fish and other seafood products.The sperm ultrastructure of Pytho depressus (Pythidae) is described in this study. The sperm are short cells, about 85-90 μm long, with an acrosome consisting of three layers, a cylindrical nucleus, which at its base has the initial region of two mitochondrial derivatives. The flagellum has two well-developed triangular accessory bodies, and a 9 + 9+2 axonemal pattern with accessory tubules provided with 16 protofilaments in their wall. The structure and shape of the accessory bodies are diagnostic characters within the superfamily. The sperm morphology of P. depressus can be easily distinguished from those of Ripiphoridae, Meloidae and Tenebrionidae. The P. depressus sperm are organized in cysts as in other species of the group but the sperm are not well aligned and show an antiparallel orientation, a feature also observed in other tenebrionids. The phylogenetic implications of the observed sperm features are discussed in the context of comparative sperm ultrastructure of other insect species.Dopamine (DA) metabolism and cell trafficking are critical for the proper functioning of DA neurons. Disruption of these DA processes can yield toxic products and is implicated in neurological conditions including Parkinson's disease (PD). To investigate pathogenic mechanisms involving DA neurons, in vitro models that recapitulate DA metabolism and trafficking in vivo are crucial. N27 cells are a widely used model for PD; however, these cells exhibit little expression of the DA transporter (DAT) confounding studies of DA uptake and metabolism. This lack of adequate DAT expression calls into question the use of this cell line as a model to study DA cell trafficking and metabolism. To overcome this problem, we stably expressed the human DAT (hDAT) in N27 cells to develop cells that we named N27-BCD. This approach allows for characterization of toxicants that may alter DA metabolism, trafficking, and/or interactions with DAT. N27-BCD cells are more sensitive to the neurotoxins 1-methyl-4-phenylpyridinium (MPTP/MPP+) and 6-hydroxydopamine (6-OHDA). N27-BCD cells allowed for clear observation of DA metabolism, whereas N27 cells did not. Here, we propose that stable expression of hDAT in N27 cells yields a useful model of DA neurons to study the impact of altered DA cell trafficking and metabolism.Normal aging results in pronounced optical and neural changes in the visual system. Processes of adaptation are thought to help compensate for many of these changes in order to maintain perceptual constancy, but it is uncertain how stable adaptation itself remains with aging. We compared the dynamics of adaptation in young (aged 19-24 years) and older (aged 66-74) adults. Contrast thresholds for Gabor patterns were tracked during and after 300 s adaptation to vertical and horizontal Gabor patches. The time course of contrast adaptation and asymptotic adaptation magnitude were similar between older and young adults when normalized for their respective baseline thresholds. Older adults showed stronger transfer of adaptation to the orthogonal orientation and there was an asymmetry between the transfer of adaptation between the horizontal and vertical orientations for both groups. These results suggest age-related changes in orientation tuning while the processes of cortical contrast adaptation remain largely intact with aging.