Juulegeberg5678

Z Iurium Wiki

One of the most important databases are the 'BfR Recommendations on Food Contact Materials' and the soon to come German national regulation on printing inks. BfR Unit 74, besides dealing with chemical risk assessment of FCM, is responsible for the evaluation of application dossiers for including substances into the BfR recommendations on FCM or the substance list of the printing inks regulation. Through the proposed work programme the fellow has been involved in risk assessment of substances that migrate from FCM into foodstuff gaining experience in the methodologies used to perform the scientific data evaluation as well as to support the BfR Unit 74s work.The EU-FORA Fellowship Programme 'Integration of tools and social science into food safety risk assessments' was proposed by the Food Standards Agency (FSA), the government department responsible for food safety in the UK. The working programme was organised into four modules, covering different areas of risk assessment, including microbiological risk assessment, chemical risk assessment, exposure assessment, risk prioritisation and the integration of risk assessment with social science. During this period, the fellow had the unique opportunity to gain experience in different fields of risk assessment, namely how to conduct a systematic review, to assess the risk of microbiological and chemical hazards, to make use of modelling tools for exposure assessment and risk prioritisation, to write scientific reports for committees and networks at the national level and to understand the role of social science in risk assessment. In addition, the fellow was able to attend several meetings, seminars, courses and workshops that helped him to gain further insight in the field of food science. The complete programme enabled a fast learning curve that allowed the fellow to have an overview of the different tools that can be employed in the wide field of food safety risk assessment, in order to acquire skills and competences that can be used in his future career.Bacterial antimicrobial resistance (AMR) is considered to be very alarming following an upward trend and thus posing a primary threat to public health. AMR has tremendous adverse effects on humans, farm animals, healthcare, the environment, agriculture and, thus, on national economies. Several tools have been proposed and adopted by numerous countries after comprehending the need for antimicrobial stewardship and for a rational use of antibiotics. These tools include diagnostics for infections or AMR detection, for measuring and monitoring antibiotic consumption (e.g. surveillance tools) and for guiding medical doctors and veterinarians in selecting suitable antibiotics. In addition, it has been known that the food chain represents a leading vector for the transmission of pathogens to humans via various routes (direct or indirect). Considerable efforts have been made and are still in progress both at international and national levels in order to control and mitigate the spread of pathogens and thus ensure food safety. During the last decades, a new concern has risen regarding the food chain playing a potential major role in the transmission of resistant bacteria as well as resistance genes from the animal kingdom to humans. Several recent studies highlight the role of food processing environments as potential AMR hotspots contributing to this spread phenomenon. P110δ-IN-1 Next-generation sequencing (NGS) technologies are becoming broadly used in the AMR field, since they allow the surveillance of resistant microorganisms, AMR determinants and mobile genetic elements. Moreover, NGS is capable of providing information on the mechanisms driving and spreading AMR throughout the food chain. In the current work programme, the aim was to acquire knowledge and skills to track AMR genes and mobile genetic elements in the food chain through NGS methodologies in order to implement a quantitative risk assessment and identify hotspots and routes of transmission of AMR along the food chain.In the kitchen of the consumer, two main transmission routes are relevant for quantitative microbiological risk assessment (QMRA) the cross-contamination route, where a pathogen on a food product may evade heating by transmission via hands, kitchen utensils and other surfaces, e.g. to non-contaminated products to be consumed raw; and the heating route, where pathogens remain on the food product and are for the most part inactivated through heating. This project was undertaken to model and estimate the magnitude of cross-contamination in the domestic environment. Scientific information from the relevant literature was collected and analyzed, to define the cross-contamination routes, to describe the variability sources and to extract and harmonise the transfer fractions to be included as model parameters. The model was used to estimate the relative impact of the cross-contamination routes for different scenarios. In addition, the effectiveness of several interventions in reducing the risk of food-borne diseasesn of cross-contamination in the kitchen and evaluation of intervention strategies.Phthalates are a group of diesters of phthalic acid and have been widely used by the industry as plasticisers giving flexibility and durability to polyvinyl chloride (PVC) plastics. Commonly their uses vary from plasticisers in food contact materials and toys to emulsifying agents in personal care products. Phthalates are not covalently bound to PVC, thus they can migrate into the air, skin, water, food and the environment. The omnipresence of phthalates results in human exposure via multiple pathways such as dermal, oral and inhalation for prolonged periods. There is evidence that phthalates can induce disruption in oestrogenic activity, reproductive, developmental and liver toxicity both in experimental animals and potentially in humans. The aim of this technical report is to summarise the activities of the fellow performed at the Norwegian Institute of Public Health (NIPH). The goals of the work programme were collecting concentration levels on five specific phthalates from the scientific literature and combining them with consumption/use data reported in a biomonitoring study part of a Horizon 2020 project (EuroMix), and finally, estimate the aggregate phthalate exposure from food and personal care products and compare them with the measured phthalate levels in urine samples collected in the biomonitoring study.The European Food Risk Assessment (EU-FORA) Fellowship work programme 'Integration of tools and social science into food safety risk assessments' was proposed and delivered by the Food Standards Agency (FSA), UK. The Food Standards Agency is a non-ministerial government department of the UK, responsible for protecting public health in relation to food in England, Wales and Northern Ireland. The programme was tailored to several different activities to provide an overview of the different tools that can be employed in food safety risk assessment also accounting for the interaction between risk assessment and social science. In order to structure the proposed work, the programme was split into four modules to run over the 12-month period of 'learning-by-doing'. In the first module, the fellow was introduced to Microbiological Risk Assessment (MRA), in the second to Chemical Risk Assessment (CRA), in the third to Social Science, and finally, in the fourth to the Risk Prioritization Tools and Networks in UK - National Dietary Data (NDNS), collection methodology, coding and analysis. The fellow was assigned to the Risk Assessment Unit within the Science, Evidence and Research Department which brings together specialist expertise from Microbiological, Chemical Risk Assessment, and Analytics Units, under one department together with additional staff from the food allergy and radiological risk assessment fields. The aim was to be fully integrated in the organisation's work gaining first-hand experience, increase knowledge of scientific aspects relevant to food safety risk assessment, and more importantly, to enhance network connection activities in the EU food risk assessment environment.Unsafe food poses global health threats, potentially endangering consumers. The great majority of people will experience a food-borne disease at some point in their lives. Ready-to-eat (RTE) food is the one intended by the producer or the manufacturer for direct human consumption without the need for cooking or other processing effective to eliminate or reduce the concentration of pathogenic microorganisms. Prepared foods are often complex and may contain multiple components that make them vulnerable for growth of pathogenic microorganisms. Among all the pathogenic microorganisms that may be present in RTE foods, Listeria monocytogenes is of special interest because it is the causative agent of listeriosis and it has the ability to survive and replicate at refrigeration and low pH conditions. We performed a quantitative microbial risk assessment (QMRA) in RTE dry-fermented sausage to measure the risk of listeriosis associated to the consumption of this product. The starting point of our investigation was the storage at the factory, after the end-product was produced and before distribution to retail. The stochastic model was implemented in MicroHibro, an online tool for QMRA. Because L. monocytogenes concentration and prevalence can vary greatly between different studies and different types of fermented sausages, we tested different scenarios to show the importance of low prevalence and concentration of the pathogen at the final product. Our results show that the risk estimates are very sensitive to the modelling hypotheses used to describe this process. Therefore, the development of accurate probabilistic models describing the initial concentration of L. monocytogenes shall largely reduce the uncertainty associated to the QMRA of listeriosis in this type of product.Plastics are used ubiquitously and have become part of our everyday life. The global production of plastics is rising, which in consequence is leading to increasing amounts of plastics being released into the environment. Recently, the issue of human exposure to micro- and nanoplastic particles and potentially resulting toxicological consequences has been broached, triggered by the discovery of microplastics in foodstuff. In addition to dietary exposure via contaminated food and beverages, other exposure paths such as via air and cosmetics, have to be considered. Currently there is no legislation for microplastics and nanoplastics as contaminants in food. Substantial data gaps with respect to exposure as well as toxicity of such particles impede the risk assessment. Within this EU-FORA fellowship project, a comprehensive data mining approach was followed, focusing on up-to-date knowledge on the occurrence and possible toxic effects associated with micro- and nanoplastics after oral exposure, especially via food products and beverages, in order to provide a basis for risk assessment and to identify important research gaps. The fellowship project was further complemented by practical work aimed at the determination of in vitro toxicity of micro-sized polylactic acid particles.

Autoři článku: Juulegeberg5678 (Barron Robinson)