Johannessenwilson3754
CBP20 (Cap-Binding Protein 20) encodes a small subunit of nuclear Cap-Binding Complex (nCBC) that together with CBP80 binds mRNA cap. We previously described barley hvcbp20.ab mutant that demonstrated higher leaf water content and faster stomatal closure than the WT after drought stress. Hence, we presumed that the better water-saving mechanism in hvcbp20.ab may result from the lower permeability of epidermis that together with stomata action limit the water evaporation under drought stress. We asked whether hvcbp20.ab exhibited any differences in wax load on the leaf surface when subjected to drought in comparison to WT cv. 'Sebastian'. To address this question, we investigated epicuticular wax structure and chemical composition under drought stress in hvcbp20.ab mutant and its WT. We showed that hvcbp20.ab mutant exhibited the increased deposition of cuticular wax. Moreover, our gene expression results suggested a role of HvCBP20 as a negative regulator of both, the biosynthesis of waxes at the level of alkane-forming, and waxes transportation. Interestingly, we also observed increased wax deposition in Arabidopsis cbp20 mutant exposed to drought, which allowed us to describe the CBP20-regulated epicuticular wax accumulation under drought stress in a wider evolutionarily context.Cucumber (Cucumis sativus) is one of the most widely cultivated vegetable crops in the world, and its yield is often reduced due to the infection of Botrytis cinerea (B. cinerea), which causes a serious disease. However, few genes involved in the response to B. cinerea have been identified in cucumber. In this study, we identified that CsWRKY10 plays a key role in the cucumber resistance to B. cinerea because that the overexpression of CsWRKY10 significantly increased the susceptibility to B. cinerea in cucumber. After the pathogen infection, the enzyme activities of catalase, superoxide dismutase and peroxidase in transgenic plants were affected, resulting in the decrease in reactive oxygen species (ROS) contents. In addition, the light microscopic images showed that overexpression of CsWRKY10 promoted the spore germination and mycelia elongation of B. cinerea in cucumber. Importantly, after B. cinerea infection, the contents of jasmonic acid (JA) are decreased, and the expression levels of JA- and salicylic acid- related defence genes significantly changed in transgenic plants. In contrast, overexpression of CsWRKY10 enhanced resistance to Corynespora cassiicola in cucumber. Collectively, this study indicated that CsWRKY10 negatively regulates the resistance of cucumber to B. cinerea by reducing the ROS contents and inhibiting the JA-mediated resistance signalling pathway, but strengthens resistance to Corynespora cassiicola.Globally, many saline-alkali soils are rich in NaHCO3 and Na2CO3, which are characterized by a high pH Carbonate stress caused by this kind of soil severely damages plant cells and inhibits plant growth. Biotin and HCO3- participate in the first and rate-limiting reaction of the fatty acid biosynthesis pathway, but whether biotin contributes to plant responses to carbonate stress is unclear. In this study, we revealed that high carbonate and biotin concentrations inhibited Arabidopsis (Arabidopsis thaliana) seedling growth. However, specific concentrations of carbonate and biotin decreased the inhibitory effects of the other compound at the germination and seedling stages. Additionally, a carbonate treatment increased the endogenous biotin content and expression of AtBIO2, which encodes a biotin synthase. Moreover, phenotypic analyses indicated that the overexpression of AtBIO2 in Arabidopsis enhanced the tolerance to carbonate stress, whereas mutations to AtBIO2 had the opposite effect. Furthermore, the carbonate stress-induced accumulation of reactive oxygen species was lower in plants overexpressing AtBIO2 than in the wild-type and bio2 mutants. Accordingly, biotin, which is an essential vitamin for plants, can enhance the resistance to carbonate stress.The yft1 tomato mutant has a yellow-fruited phenotype controlled by a recessive gene of YFT1 allele, which has been shown by map-based cloning to be a homolog of ETHYLENE INSENSITIVE 2 (EIN2). Genetic lesion of YFT1 allele in yft1 is attributed to a 573 bp DNA fragment (IF573) insertion at 1,200 bp downstream of the transcription start site. Transcriptomic analysis revealed that YFT1 lesion resulted in 5,053 differentially expressed genes (DEGs) in yft1 pericarp compared with the M82 wild type cultivar. These were annotated as being involved in ethylene synthesis, chromoplast development, and carotenoid synthesis. The YFT1 lesion caused a reduction in its own transcript levels in yft1 and impaired ethylene emission and signal transduction, delayed chromoplast development and decreased carotenoid accumulation. The molecular mechanism underlying the downregulated YFT1 allele in yft1 was examined at both RNA and DNA levels. The IF573 event appeared to introduce two negative regulatory sequences located at -272 to -173 bp and -172 to -73 bp in the YFT1 allele promoter, causing alterative splicing due to introduction of aberrant splicing sites, and breaking upstream open reading frames (uORF) structure in the 5'-UTR. Those results a new provided insight into molecular regulation of color formation in tomato fruit.Cucumber fruit wart composed of tubercule and spine (trichome on fruit) is not only an important fruit quality trait in cucumber production, but also a well-studied model for plant cell-fate determination. The development of spine is closely related to the initiation and formation of tubercule. selleckchem The spine differentiation regulator CsGL1 has been proved to be epistatic to the tubercule initiation factor CsTu, which is the only connection to be identified between spine and tubercule formations. Our previous studies found that the MIXTA-LIKE transcription factor CsMYB6 can suppress fruit spine initiation, which is independent of CsGL1. How the formation of spine and tubercule is regulated at the molecular level by CsMYB6 remains poorly understood. In this study, we characterized cucumber 35SCsMYB6 transgenic plants, which displayed an obvious reduction in the number and size of fruit spines and tubecules. Molecular analyses showed that CsMYB6 directly interacted with the key spine formation factor CsTTG1 in regulating the formation of fruit spine, and CsTu in regulating the initiation of fruit tubercule, respectively.