Iveylarsen0224
Moreover, it showed, after exposure, an increase of iodine content mainly in the digestive glands, followed by gills and gonads, highlighting that ICMs actually enter the organisms. Thus, bioaccumulation of ICMs studies were then performed, by liquid chromatography coupled to tandem mass spectrometry, on entire mollusks and digestive glands of organisms exposed at 0, 10, 100, and 1000 μg/L of both ICMs during 21 days, followed by 4 days of depuration. These first data on ICMs concentrations in zebra mussels, showed a clear accumulation of ICMs in mussels as a function of relative exposure level, as well as a rapid depuration. Osmolality did not seem to have a significant impact on the accumulation level, but a slight difference was observed on the accumulation pattern between both ICMs.In 2019, 368 mln tonnes of plastics were produced worldwide. Likewise, the textiles and apparel industry, with an annual revenue of 1.3 trillion USD in 2016, is one of the largest fast-growing industries. Sustainable use of resources forces the development of new plastic and textile recycling methods and implementation of the circular economy (reduce, reuse and recycle) concept. However, circular use of plastics and textiles could lead to the accumulation of a variety of contaminants in the recycled product. This paper first reviewed the origin and nature of potential hazards that arise from recycling processes of plastics and textiles. Next, we reviewed current analytical methods and safety assessment frameworks that could be adapted to detect and identify these contaminants. Various contaminants can end up in recycled plastic. Phthalates are formed during waste collection while flame retardants and heavy metals are introduced during the recycling process. Contaminants linked to textile recycling include; detergents, resistant coatings, flame retardants, plastics coatings, antibacterial and anti-mould agents, pesticides, dyes, volatile organic compounds and nanomaterials. However, information is limited and further research is required. Various techniques are available that have detected various compounds, However, standards have to be developed in order to identify these compounds. Furthermore, the techniques mentioned in this review cover a wide range of organic chemicals, but studies covering potential inorganic contamination in recycled materials are still missing. Finally, approaches like TTC and CoMSAS for risk assessment should be used for recycled plastic and textile materials.The present study investigated the roles of peroxydisulfate (PDS) radicals and sulfate radicals (SO4•-) that formed from sulfate (SO42-) during electrochemical oxidation of perfluorooctanoic acid (PFOA). The effect of operating parameters such as different types of electrolytes (NaCl, NaClO4, and Na2SO4), initial pH, current density, dose of electrolyte, and initial concentration of PFOA using electrochemical oxidation for perfluorooctanoic acid (PFOA) decomposition study was investigated. A difference in the removal efficiency with different electrolytes (i.e., Cl-, ClO4-, and SO42-) illustrated an increasing effect of electrooxidation of PFOA in the order of ClO4- less then Cl- less then SO42-, which suggested that •OH induced oxidation and direct e- transfer reaction continued to play a crucial role in oxidation of PFOA. At the optimum treatment condition of j = 225.2 Am-2, Na2SO4 concentration = 1.5 gL-1, [PFOA]o = 50 mgL-1 and initial pH = 3.8 maximum PFOA removal of 92% and TOC removal of 80% was investigated at 240 min. The formation of three shorter-chain perfluorocarboxylates (i.e., perfluoroheptanoic acid (PFHpA), perfluorohexanoic acid (PFHxA), and perfluoropentanoic acid (PFPeA) and formate (HCOO-) ions were detected as by-products of PFOA electro-oxidation, showing that the C-C bond first broken in C7F15 and then mineralized into CO2, and fluoride ion (F-). The fluorine recovery as F- ions and the organic fluorine as the shorter-chain by-products were also obtained. The degradation kinetic has also been studied using the nth-order kinetic model.The temperature-dependent kinetics was investigated for the reaction of the simplest Criegee intermediate (CH2OO) with Methyl-ethyl ketone (CH3COC2H5, MEK). A direct method was employed to measure the rate of change of the concentration of CH2OO using a highly sensitive Pulsed Laser Photolysis-Cavity Ring-down Spectroscopy (PLP-CRDS) technique. The temperature dependent rate coefficient obtained for the CH2OO + MEK reaction was k4(T = 258-318 K) = (1.26 ± 0.16) × 10-14 × exp(1179.1 ± 71.8)/T cm3 molecule-1 s-1 and the rate coefficient at room temperature was k4(298 K) = (6.39 ± 0.20) × 10-13 cm3 molecule-1 s-1 at 50 Torr/N2. Theoretical calculations were performed to predict the reaction mechanism and probable end products. The secondary ozonide (SOZ) formation pathway was found to be the rate determining step, which gets decomposed into HCOOH and MEK as the major products. Both experimental and theoretical results show a negative T-dependency in the studied range.Enzyme-based biocatalytic treatment has been known as an effective measure to biologically degrade organic pollutants. Advantageously, enzymes could be immobilized on solid supports, and such fact enables reuse/prolong the enzymatic capability. It could be of great importance to functionalize a support material for enhancing the immobilization efficiency/stability of enzymes. As such, this study laid great emphasis on covalent bonding to immobilize horseradish peroxidase (HRP) on a functionalized rice straw biochar with glutaraldehyde (GA) as a crosslinker. Biochar was pretreated by the electrochemical method and the acid treatment respectively to enrich the oxygen-containing functional groups. These led to the enhanced immobilizing ability of biochar. The HRP immobilized on the electrochemically-functionalized biochar (HRP-EBC) showed three times as much enzyme activity as the HRP directly adsorbed onto biochar. The HRP immobilized on the acid-functionalized biochar (HRP-ABC) showed activity similar to that of HRP-EBC. It was concluded that both the (acid/electrochemical) pretreatments are effective to enhance enzyme immobilization. Nevertheless, the electrochemical functionalized method of biochar is chemical oxidant-free, and one important lesson from a series of tests was that the pretreatment of biochar through the electrochemical method could be more environmentally benign. Moreover, employing HRP-EBC could be beneficial from a perspective of a real environmental practice considering its higher pH, thermal stability, and good reusability. 80% of phenol was degraded in 1 h in the presence of HRP-EBC when pH was 7.0 and a ratio of H2O2 to phenol was 11.5.The biosynthesis of amino acids (AAs) in plants is affected by different nitrogen (N) sources. The effects of exogenous cyanide (KCN) on the concentrations and profiles of AAs in rice seedlings were carried out in the presence of nitrate (+NO3-)/ammonium (+NH4+) or N deficiency (-N). Targeted metabolomics analysis indicated that the highest accumulation of AAs in CN--treated rice seedlings was detected in the "CN-+NH4+" treatments than in other treatments, wherein the doses of exogenous KCN did not significantly affect the total amount of AAs in rice seedlings at the same N fertilized condition. The total content of AAs in rice shoots under "CN-+NH4+" treatments was higher than other treatments, while the total content of AAs in rice roots under "CN-+NO3-" treatments was higher than other treatments. Also, the profiles of 21 AAs in CN--treated rice seedlings showed tissue-specific under different N fertilization. The relative importance index (RII) of AA was used to evaluate the importance of AAs in CN--treated rice seedlings under different N fertilization. The common AAs with higher RII values were compared between three different treatments of KCN (e.g., 0, 1, and 2 mg CN/L). Under "CN-+(-N)" treatments, Ala, Asp, Glu, Val, and Gly (Ala, Gly, Val, and Lys) were the common AAs in rice roots (shoots). Under "CN-+NO3-" treatments, Ala, Glu, Asp, Ser, and Thr (Asp, Ala, Thr, Ser, and Asn) were the common AAs with higher RII values in rice roots (shoots) between all CN- treatments. Under "CN-+NH4+" treatments, Asp, Gln, Asn, and Ala (Asp, Glu, and Thr) were the common AAs with higher RII values in rice roots (shoots) between all CN- treatments. These results suggested that using the RII to describe the change and fluctuation of AAs in rice plants may reflect the different N utilization strategies in response to exogenous CN- exposure.Bisphenol A (BPA), an important environmental pollutant, is known to damage reproductive development. However, the underlying epigenetic mechanism in Leydig cells during BPA exposure has not been explored in detail. In this study, TM3 Leydig cells were treated with BPA (0, 20, 40 and 80 μM) for 72 h. selleck kinase inhibitor The differentially expressed TET1 cell model was constructed to explore the mechanism of BPA-induced cytotoxicity. Results showed that BPA exposure significantly inhibited cell viability and increased apoptosis of TM3 Leydig cells. Meanwhile, the mRNA of TET1, Cav3.2 and Cav3.3 decreased significantly with the increase of BPA exposure. Importantly, TET1 significantly promoted proliferation of TM3 Leydig cells and inhibited apoptosis. Differentially expressed TET1 significantly affected BPA-induced toxicity in TM3 Leydig cells. Notably, TET1 elevated the mRNA levels of Cav3.2 and Cav3.3. MeDIP and hMeDIP confirmed that TET1 regulated the expression of Cav3.3 through DNA hydroxymethylation. Our study firstly presented that TET1 participated in BPA-induced toxicity in TM3 Leydig cells through regulating Cav3.3 hydroxymethylation modification. These findings suggest that TET1 acts as a potential epigenetic marker for reproductive toxicity induced by BPA exposure and may provide a new direction for the research on male reproductive damage.Osteoarthritis (OA) is characterized by cartilage matrix degeneration and chondrocyte apoptosis. Prolonged endoplasmic reticulum (ER) stress participates in chondrocyte apoptosis and cartilage degeneration in OA progression. miR-486-5p could suppress the apoptosis of nucleus pulposus cells and cardiomyocyte, yet whether miR-486-5p modified exosomes could modulate ER stress and apoptosis of chondrocytes remain unknown. We validated the increased inflammation and ER stress in OA synovium and cartilage, and the inhibition of ER stress could attenuate the IL-1β induced chondrocyte apoptosis. Administration of exogenous miR-486-5p could inhibit the ER stress, alleviate chondrocytes apoptosis and promote matrix regeneration. In comparison with direct administration of miR-486-5p and miR-486-5p overexpressing ADSCs, miR-486-5p modified exosomes indicated a better effect in modulating chondrocyte homeostasis. MiR-486-5p containing exosomes could also regulate macrophage polarization. Our IVIS imaging data validated that intraarticular injection of miR-486-5p containing exosomes could sustain for at least 7 days. MiR-486-5p containing exosomes showed a better effect on alleviating rats OA compared with direct administration of miR-486-5p and miR-486-5p overexpressing ADSCs. Our data demonstrated that miR-486-5p modified exosomes have a better effect on alleviating chondrocyte apoptosis and osteoarthritis. This study provides evidence of this efficient strategy of exosomal miRNA delivery and the miRNA-based therapy for OA.