Hubbardguzman3486

Z Iurium Wiki

In MoS2 trilayers, our experiments uncovered two types of interlayer excitons with and without in-built electric dipoles. Highly tunable excitonic transitions with large in-built dipoles and oscillator strengths will result in strong exciton-exciton interactions and therefore hold great promise for non-linear optics with polaritons.Nanoscale lithography and information storage in biocompatible materials offer possibilities for applications such as bioelectronics and degradable electronics for which traditional semiconductor fabrication techniques cannot be used. Silk fibroin, a natural protein renowned for its strength and biocompatibility, has been widely studied in this context. Here, we present the use of silk film as a biofunctional medium for nanolithography and data storage. Using tip-enhanced near-field infrared nanolithography, we demonstrate versatile manipulation and characterize the topography and conformation of the silk in situ. In particular, we fabricate greyscale and dual-tone nanopatterns with full-width at half-maximum resolutions of ~35 nm, creating an erasable 'silk drive' that digital data can be written to or read from. As an optical storage medium, the silk drive can store digital and biological information with a capacity of ~64 GB inch-2 and exhibits long-term stability under various harsh conditions. As a proof-of-principle demonstration, we show that this silk drive can be biofunctionalized to exhibit chromogenic reactions, resistance to bacterial infection and heat-triggered, enzyme-assisted decomposition.The progress of plasmon-based technologies relies on an understanding of the properties of the enhanced electromagnetic fields generated by the coupling nanostrucutres1-6. Plasmon-enhanced applications include advanced spectroscopies7-10, optomechanics11, optomagnetics12 and biosensing13-17. However, precise determination of plasmon field intensity distribution within a nanogap remains challenging. Here, we demonstrate a molecular ruler made from a set of viologen-based, self-assembly monolayers with which we precisely measures field distribution within a plasmon nanocavity with ~2-Å spatial resolution. We observed an unusually large plasmon field intensity inhomogeneity that we attribute to the formation of a plasmonic comb in the nanocavity. As a consequence, we posit that the generally adopted continuous media approximation for molecular monolayers should be used carefully.There have been many attempts to visualize the inflamed joints using multiphoton microscopy. However, due to the hypervascular and multilayered structure of the inflamed synovium, intravital imaging of the deep synovial tissue has been difficult. Here, we established original intravital imaging systems to visualize synovial tissue and pathological osteoclasts at the pannus-bone interface using multiphoton microscopy. Combined with fluorescence-labeling of CTLA-4 Ig, a biological agent used for the treatment of rheumatoid arthritis, we identified that CTLA-4 Ig was distributed predominantly within the inflamed synovium and bound to CX3CR1+ macrophages and CD140a+ fibroblasts 6 h after injection, but not to mature osteoclasts. Intravital imaging of blood and lymphatic vessels in the inflamed synovium further showed that extravasated CTLA-4 Ig was immediately drained through lymphatic vessels under acute arthritic conditions, but the drainage activity was retarded under chronic conditions. These results indicate that this intravital synovial imaging system can serve as a platform for exploring the dynamics of immune cells, osteoclasts, and biological agents within the synovial microenvironment in vivo.We use aggregated and anonymized information based on international expenditures through corporate payment cards to map the network of global business travel. We combine this network with information on the industrial composition and export baskets of national economies. The business travel network helps to predict which economic activities will grow in a country, which new activities will develop and which old activities will be abandoned. In statistical terms, business travel has the most substantial impact among a range of bilateral relationships between countries, such as trade, foreign direct investments and migration. Moreover, our analysis suggests that this impact is causal business travel from countries specializing in a specific industry causes growth in that economic activity in the destination country. Our interpretation of this is that business travel helps to diffuse knowledge, and we use our estimates to assess which countries contribute or benefit the most from the diffusion of knowledge through global business travel.If the structure of language vocabularies mirrors the structure of natural divisions that are universally perceived, then the meanings of words in different languages should closely align. By contrast, if shared word meanings are a product of shared culture, history and geography, they may differ between languages in substantial but predictable ways. Here, we analysed the semantic neighbourhoods of 1,010 meanings in 41 languages. The most-aligned words were from semantic domains with high internal structure (number, quantity and kinship). Words denoting natural kinds, common actions and artefacts aligned much less well. Languages that are more geographically proximate, more historically related and/or spoken by more-similar cultures had more aligned word meanings. These results provide evidence that the meanings of common words vary in ways that reflect the culture, history and geography of their users.The groundwater crisis in northwestern India is the result of over-exploitation of groundwater resources for irrigation. The Government of India has targeted a 20 percent improvement in irrigation groundwater use efficiency. In this perspective, and using a regional-scale calibrated and validated three-dimensional groundwater flow model, this article provides the first forecasts of water levels in the study area up to the year 2028, both with and without this improvement in use efficiency. Future water levels without any mitigation efforts are anticipated to decline by up to 2.8 m/year in some areas. read more A simulation with a 20 percent reduction in groundwater abstraction shows spatially varied aquifer responses. Tangible results are visible in a decade, and the water-level decline rates decrease by 36-67 percent in over-exploited areas. Although increasing irrigation use efficiency provides tangible benefits, an integrated approach to agricultural water management practice that incorporates use efficiency along with other measures like water-efficient cropping patterns and rainwater harvesting may yield better results in a shorter period.

Autoři článku: Hubbardguzman3486 (Knowles Foster)