Hornknox8131
We report here on the stability of a precursor solution for perovskite solar cells. Solution was aged at ambient conditions for 4 weeks, where two different precursor solutions were prepared by dissolving FAI and PbI2 in DMSO/DMF solvent (precursor mixture solution) and the synthesized single crystalline α-FAPbI3 in the same solvent (single crystal solution). Selleckchem Seliciclib Perovskite films were prepared by depositing fresh or aged solutions at weekly intervals. Photovoltaic parameters were hardly altered by aging the single crystal solution, while power conversion efficiency was gradually decreased with aging time for the precursor mixture solution mainly due to the decreased photocurrent density and fill factor. Solution pH was changed from basic to acidic due to HI formed by aging the precursor mixture solution, which prevents the formation of α-phase of FAPbI3. link2 For the single crystal solution, basic conditions remained unchanged by aging. In addition, the presence of δ-phase in the annealed perovskite films was found to have negative influence on the long-term stability. It is thus important to maintain the pH of the precursor solution to avoid aging effects and remove δ-phase in the annealed film for device stability.Nitrogenase is the enzyme that catalyzes biological N2 reduction to NH3. This enzyme achieves an impressive rate enhancement over the uncatalyzed reaction. Given the high demand for N2 fixation to support food and chemical production and the heavy reliance of the industrial Haber-Bosch nitrogen fixation reaction on fossil fuels, there is a strong need to elucidate how nitrogenase achieves this difficult reaction under benign conditions as a means of informing the design of next generation synthetic catalysts. This Review summarizes recent progress in addressing how nitrogenase catalyzes the reduction of an array of substrates. New insights into the mechanism of N2 and proton reduction are first considered. This is followed by a summary of recent gains in understanding the reduction of a number of other nitrogenous compounds not considered to be physiological substrates. Progress in understanding the reduction of a wide range of C-based substrates, including CO and CO2, is also discussed, and remaining challenges in understanding nitrogenase substrate reduction are considered.Nanoparticles (NPs) decorated with topographically or chemically distinct surface patches are an emerging class of colloidal building blocks of functional hierarchical materials. Surface segregation of polymer ligands into pinned micelles offers a strategy for the generation of patchy NPs with controlled spatial distribution and number of patches. The thermodynamic nature of this approach poses a question about the stability of multiple patches on the NP surface, as the lowest energy state is expected for NPs carrying a single patch. In the present work, for gold NPs end-grafted with thiol-terminated polymer molecules, we show that the patchy surface morphology is preserved under conditions of strong grafting of the thiol groups to the NP surface (i.e., up to a temperature of 40 °C), although the patch shape changes over time. At higher temperatures (e.g., at 80 °C), the number of patches per NP decreases, due to the increased lateral mobility and coalescence of the patches as well as the ultimate loss of the polymer ligands due to desorption at enhanced solvent quality. The experimental results were rationalized theoretically, using a scaling approach. The results of this work offer insight into the surface science of patchy nanocolloids and specify the time and temperature ranges of the applications of patchy NPs.Large area 2D WS2 has been grown successfully by radio frequency magnetron sputtering (RFMS) method. First, in order to investigate the pressure dependence on the grown WS2 samples, WS2 were grown at 5 different growth pressures, 5, 10, 15, 20, and 25 mTorr. It has been observed that the surface morphology changes for the samples grown at higher growth pressures, 15, 20, and 25 mTorr. Vertically standing nanowall (NW)-like structures have been formed at these relatively high growth pressures. It has also been observed that the (002) plane is highly dominant, which means layer by layer growth parallel to the substrate, for the sample grown at 20 mTorr. X-ray photoelectron spectroscopy (XPS) measurements revealed an increasing atomic percentage of the S element to W element, S/W, ratio in thin films, as the growth pressure increases. Growth dynamics of WS2 has been investigated by time-dependent-growth WS2 samples, 5, 10, 20, 40, and 80 s under 20 mTorr pressure. It has been shown by atomic force microscopy, scanning electron microscopy, and transmission electron microscopy that a highly smooth surface has been achieved in the samples grown for the duration of 5 and 10 s. Raman mapping measurements on the sample grown at 5 s have revealed large area homogeneous growth. As the growth time gets longer, the NWs emerge on the surface at some nucleation points. Only the peak that belongs to the (002) plane has been observed for samples grown at 5 and 10 s by the X-ray diffraction (XRD) measurements. XRD measurements have revealed the appearance of turbostratic peaks of (11l) and (10l) as the thickness increases. Photoluminescence measurements have indicated near-band-edge emission centered at 630 nm for only 5 and 10 s samples.Single-particle spectroscopy is central to the characterization of plasmonic nanostructures and understanding of light-matter interactions in chiral nanosystems. Although chiral plasmonic nanostructures are generally characterized by their circular differential extinction and scattering, single-particle absorption studies can extend our understanding of light-matter interactions. Here, we introduce an experimental observation of photothermal chirality which originated from circular differential absorption of chiral plasmonic nanostructures. Using luminescence ratio thermometry, we identify the optical and photothermal handedness and an absolute temperature difference of 6 K under the right and left circularly polarized light. We observe a circular differential extinction parameter (gext) of -0.13 in colloidally prepared gold helicoids and compare our findings with numerical simulations using finite element methods. The simulated data showed that circular differential absorption and the maximum temperature of a small cluster of helical nanoparticles are polarization-dependent. We observed an intensity-dependent photothermal g-factor from chiral helicoids that decreases slightly at higher temperatures. We also measure a range of optical g-factors from several gold helicoids, which are attributed to the heterogeneity of helicoids in nanoparticles during synthesis. The principles of differential photothermal response of chiral nanomaterials and heat generation described here can be potentially used for thermal photocatalysis, energy conversion, and electronic applications.A new 96-well plate methodology for fast, enzyme-multiplexed screening for metabolite-protein adducts was developed. Magnetic beads coated with metabolic enzymes were used to make potentially reactive metabolites that can react with test protein in the wells, followed by sample workup in multiple 96-well filter plates for LC-MS/MS analysis. Incorporation of human microsomes from multiple organs and selected supersomes of single cytochrome P450 (cyt P450) enzymes on the magnetic beads provided a broad spectrum of metabolic enzymes. The reacted protein was then isolated, denatured, reduced, alkylated, and digested, and peptides were collected in a sequence of 96-well filter plates for analysis. Method performance was evaluated by trapping acetaminophen reactive metabolite N-acetyl-p-benzoquinoneimine (NAPQI) with human glutathione S-transferase pi (hGSTP), human serum albumin (HSA), and bovine serum albumin (BSA) as model target proteins. Relative amounts of acetaminophen metabolite and hGSTP adducts were compared with 10 different cyt P450 enzymes. Human liver microsomes and CYP1A2 supersomes showed the highest bioactivation rate for adduct formation, in which all four cysteines of hGSTP reacted with NAPQI. Eight cysteines of HSA and four cysteines of BSA have been detected to react with NAPQI. This method has the potential for fast multienzyme protein adduct screening with high efficiency and accuracy.A new concept for the direct ink writing (DIW) of model titanium dioxide inks through capillary action (no applied pressure during printing) is investigated through the use of diluted low viscosity inks for micropatterning. The inks are characterized with respect to rheological, thermal, and surface properties. Printed structures are characterized by profilometry, atomic force microscopy (AFM), scanning electron microscopy (SEM), and photocatalytic degradation of methylene blue. By use of the concept of surface force-driven DIW and by control of the writing speed and ink composition for different substrate surfaces, the heights of profiles of printed structures can be tailored from under 100 nm to over 1 μm. Furthermore, it is demonstrated that the surface roughness of the titanium dioxide films can be reduced up to 60% by increasing writing speed and line-to-line spacing. This work highlights a new concept of low viscosity solution micropatterning that currently can only be performed by other methods such as inkjet printing. It is believed that this novel approach will hold the key to patterning a range of low viscosity inks for various thin film technological applications.As genome sequencing methodologies have become more sensitive in detecting low-frequency rare-variant events, the link between post-zygotic mutagenesis and somatic mosaicism in the etiology of several human genetic conditions other than cancers has become more clear. Given that current clinical-genomics diagnostic methods have limited detection sensitivity for mosaic events, a copy-number variant (CNV) deletion inherited from a parent with low-level ( less then 10%) mosaicism can be erroneously interpreted in the proband to represent a de novo germline event. Here, we describe three sensitive, precise, and cost-efficient methods that can quantitatively assess the potential degree of parental somatic mosaicism levels for CNV deletions droplet digital PCR (ddPCR), PCR amplicon-based next-generation sequencing (NGS), and quantitative PCR. ddPCR using the EvaGreen fluorescent dye protocol can specifically quantify the deleted or non-deleted alleles by analyzing the number of droplets positive for a fluorescent signal for each event. PCR amplicon-based NGS assesses the allele frequencies of a heterozygous single-nucleotide polymorphism within a deletion region. The difference in number of reads between the two genotypes indicates the level of somatic mosaicism for the CNV deletion. Quantitative PCR can be applied where the relative quantity of the deletion junction-specific product represents the level of mosaicism. Clinical implementation of these quantitative variant-detection methods enables potentially more accurate assessment of disease recurrence risk in family-based genetic counseling, allowing couples to engage in more informed family planning. link3 © 2020 by John Wiley & Sons, Inc. Basic Protocol Droplet digital PCR (ddPCR) Alternate Protocol 1 PCR amplicon-based next-generation sequencing Alternate Protocol 2 Quantitative real-time PCR (qPCR).