Holmgaardfoster3970

Z Iurium Wiki

The SARS-CoV-2 protein Nsp2 has been implicated in a wide range of viral processes, but its exact functions, and the structural basis of those functions, remain unknown. Here, we report an atomic model for full-length Nsp2 obtained by combining cryo-electron microscopy with deep learning-based structure prediction from AlphaFold2. The resulting structure reveals a highly-conserved zinc ion-binding site, suggesting a role for Nsp2 in RNA binding. Mapping emerging mutations from variants of SARS-CoV-2 on the resulting structure shows potential host-Nsp2 interaction regions. Using structural analysis together with affinity tagged purification mass spectrometry experiments, we identify Nsp2 mutants that are unable to interact with the actin-nucleation-promoting WASH protein complex or with GIGYF2, an inhibitor of translation initiation and modulator of ribosome-associated quality control. Our work suggests a potential role of Nsp2 in linking viral transcription within the viral replication-transcription complexes (RTC) to the translation initiation of the viral message. Collectively, the structure reported here, combined with mutant interaction mapping, provides a foundation for functional studies of this evolutionary conserved coronavirus protein and may assist future drug design.The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents a public health crisis, and the vaccines that can induce highly potent neutralizing antibodies are essential for ending the pandemic. Pargyline The spike (S) protein on the viral envelope mediates human angiotensin-converting enzyme 2 (ACE2) binding and thus is the target of a variety of neutralizing antibodies. In this work, we built various S trimer-antibody complex structures on the basis of the fully glycosylated S protein models described in our previous work, and performed all-atom molecular dynamics simulations to get insight into the structural dynamics and interactions between S protein and antibodies. Investigation of the residues critical for S-antibody binding allows us to predict the potential influence of mutations in SARS-CoV-2 variants. Comparison of the glycan conformations between S-only and S-antibody systems reveals the roles of glycans in S-antibody binding. In addition, we explored the antibody binding modes, and the influences of antibody on the motion of S protein receptor binding domains. Overall, our analyses provide a better understanding of S-antibody interactions, and the simulation-based S-antibody interaction maps could be used to predict the influences of S mutation on S-antibody interactions, which will be useful for the development of vaccine and antibody-based therapy.We analyze the whole genome phylogeny and taxonomy of the SARS-CoV-2 virus using compression. This is a new fast alignment-free method called the "normalized compression distance" (NCD) method. It discovers all effective similarities based on Kolmogorov complexity. The latter being incomputable we approximate it by a good compressor such as the modern zpaq. The results comprise that the SARS-CoV-2 virus is closest to the RaTG13 virus and similar to two bat SARS-like coronaviruses bat-SL-CoVZXC21 and bat-SL-CoVZC4. The similarity is quantified and compared with the same quantified similarities among the mtDNA of certain species. We treat the question whether Pangolins are involved in the SARS-CoV-2 virus. The compression method is simpler and possibly faster than any other whole genome method, which makes it the ideal tool to explore phylogeny.The current genomics era is bringing an unprecedented growth in the amount of gene expression data, only comparable to the exponential growth of sequences in databases during the last decades. This data now allows the design of secondary analyses that take advantage of this information to create new knowledge through specific computational approaches. One of these feasible analyses is the evaluation of the expression level for a gene through a series of different conditions or cell types. Based on this idea, we have developed ASACO, Automatic and Serial Analysis of CO-expression, which performs expression profiles for a given gene along hundreds of normalized and heterogeneous transcriptomics experiments and discover other genes that show either a similar or an inverse behavior. It might help to discover co-regulated genes, and even common transcriptional regulators in any biological model, including human diseases or microbial infections. The present SARS-CoV-2 pandemic is an opportunity to test this novel an of SARS-CoV-2 host factors. All of this proves that ASACO can discover gene co-regulation networks with potential for proposing new genes, pathways and regulators participating in particular biological systems.

ASACO identifies regulatory associations of genes using public transcriptomics data.ASACO highlights new cell functions likely involved in the infection of coronavirus.Comparison with high-throughput screenings validates candidates proposed by ASACO.Genes co-expressed with host's genes used by SARS-CoV-2 are related to stress granules.

ASACO identifies regulatory associations of genes using public transcriptomics data.ASACO highlights new cell functions likely involved in the infection of coronavirus.Comparison with high-throughput screenings validates candidates proposed by ASACO.Genes co-expressed with host's genes used by SARS-CoV-2 are related to stress granules.Cryo-electron microscopy (cryo-EM) has produced a number of structural models of the SARS-CoV-2 spike, already prompting biomedical outcomes. However, these reported models and their associated electrostatic potential maps represent an unknown admixture of conformations stemming from the underlying energy landscape of the spike protein. As for any protein, some of the spike's conformational motions are expected to be biophysically relevant, but cannot be interpreted only by static models. Using experimental cryo-EM images, we present the energy landscape of the spike protein conformations, and identify molecular rearrangements along the most-likely conformational path in the vicinity of the open (so called 1RBD-up) state. The resulting global and local atomic refinements reveal larger movements than those expected by comparing the reported 1RBD-up and 1RBD-down cryo-EM models. Here we report greater degrees of "openness" in global conformations of the 1RBD-up state, not revealed in the single-model interpretations of the density maps, together with conformations that overlap with the reported models.

Autoři článku: Holmgaardfoster3970 (Brock Nguyen)