Hodgehewitt0151

Z Iurium Wiki

HFrEF rats (n=29) demonstrated a longer (p=0.0191) ventricular effective refractory period (ERP) and a greater (p=0.0394) VT inducibility compared with sham (n=7). HFrEF rats treated with the graft (n=12) exhibited no change in capture threshold (p=0.3220), but had a longer ventricular ERP (p=0.0029) compared with HFrEF. No statistically significant change in VT incidence was found between HFrEF rats treated with the graft and untreated HFrEF rats (p=0.0834).Surgical deployment of a fibroblast-containing biomaterial in a rodent ischemic cardiomyopathy model prolonged ventricular ERP as measured by programmed electrical stimulation. This hypothesis-generating study warrants additional studies to further characterize the antiarrhythmic or proarrhythmic effects of this novel surgical therapy.Acute myeloid leukemia (AML) relapse after allogeneic hematopoietic cell transplantation (allo-HCT) has a dismal prognosis. We found that T cells of patients relapsing with AML after allo-HCT exhibited reduced glycolysis and interferon-γ production. read more Functional studies in multiple mouse models of leukemia showed that leukemia-derived lactic acid (LA) interfered with T cell glycolysis and proliferation. Mechanistically, LA reduced intracellular pH in T cells, led to lower transcription of glycolysis-related enzymes, and decreased activity of essential metabolic pathways. Metabolic reprogramming by sodium bicarbonate (NaBi) reversed the LA-induced low intracellular pH, restored metabolite concentrations, led to incorporation of LA into the tricarboxylic acid cycle as an additional energy source, and enhanced graft-versus-leukemia activity of murine and human T cells. NaBi treatment of post-allo-HCT patients with relapsed AML improved metabolic fitness and interferon-γ production in T cells. Overall, we show that metabolic reprogramming of donor T cells is a pharmacological strategy for patients with relapsed AML after allo-HCT.Meniscus tears are common knee injuries and a major osteoarthritis (OA) risk factor. Knowledge gaps that limit the development of therapies for meniscus injury and degeneration concern transcription factors that control the meniscus cell phenotype. Analysis of RNA sequencing data from 37 human tissues in the Genotype-Tissue Expression database and RNA sequencing data from meniscus and articular cartilage showed that transcription factor Mohawk (MKX) is highly enriched in meniscus. In human meniscus cells, MKX regulates the expression of meniscus marker genes, OA-related genes, and other transcription factors, including Scleraxis (SCX), SRY Box 5 (SOX5), and Runt domain-related transcription factor 2 (RUNX2). In mesenchymal stem cells (MSCs), the combination of adenoviral MKX (Ad-MKX) and transforming growth factor-β3 (TGF-β3) induced a meniscus cell phenotype. When Ad-MKX-transduced MSCs were seeded on TGF-β3-conjugated decellularized meniscus scaffold (DMS) and inserted into experimental tears in meniscus explants, they increased glycosaminoglycan content, extracellular matrix interconnectivity, cell infiltration into the DMS, and improved biomechanical properties. Ad-MKX injection into mouse knee joints with experimental OA induced by surgical destabilization of the meniscus suppressed meniscus and cartilage damage, reducing OA severity. Ad-MKX injection into human OA meniscus tissue explants corrected pathogenic gene expression. These results identify MKX as a previously unidentified key transcription factor that regulates the meniscus cell phenotype. The combination of Ad-MKX with TGF-β3 is effective for differentiation of MSCs to a meniscus cell phenotype and useful for meniscus repair. MKX is a promising therapeutic target for meniscus tissue engineering, repair, and prevention of OA.A major contributor to treatment failure in Chagas disease, caused by infection with the protozoan parasite Trypanosoma cruzi, is that current treatment regimens do not address the drug insensitivity of transiently dormant T. cruzi amastigotes. Here, we demonstrated that use of a currently available drug in a modified treatment regimen of higher individual doses, given less frequently over an extended treatment period, could consistently extinguish T. cruzi infection in three mouse models of Chagas disease. Once per week administration of benznidazole at a dose 2.5 to 5 times the standard daily dose rapidly eliminated actively replicating parasites and ultimately eradicated the residual, transiently dormant parasite population in mice. This outcome was initially confirmed in "difficult to cure" mouse infection models using immunological, parasitological, and molecular biological approaches and ultimately corroborated by whole organ analysis of optically clarified tissues using light sheet fluorescence microscopy (LSFM). This tool was effective for monitoring pathogen load in intact organs, including detection of individual dormant parasites, and for assessing treatment outcomes. LSFM-based analysis also suggested that dormant amastigotes of T. cruzi may not be fully resistant to trypanocidal compounds such as benznidazole. Collectively, these studies provide important information on the phenomenon of dormancy in T. cruzi infection in mice, demonstrate methods to therapeutically override dormancy using a currently available drug, and provide methods to monitor alternative therapeutic approaches for this, and possibly other, low-density infectious agents.The higher prevalence of inflammatory bowel disease (IBD) in Western countries points to Western diet as a possible IBD risk factor. High sugar, which is linked to many noncommunicable diseases, is a hallmark of the Western diet, but its role in IBD remains unknown. Here, we studied the effects of simple sugars such as glucose and fructose on colitis pathogenesis in wild-type and Il10-/- mice. Wild-type mice fed 10% glucose in drinking water or high-glucose diet developed severe colitis induced by dextran sulfate sodium. High-glucose-fed Il10-/- mice also developed a worsened colitis compared to glucose-untreated Il10-/- mice. Short-term intake of high glucose or fructose did not trigger inflammatory responses in healthy gut but markedly altered gut microbiota composition. In particular, the abundance of the mucus-degrading bacteria Akkermansia muciniphila and Bacteroides fragilis was increased. Consistently, bacteria-derived mucolytic enzymes were enriched leading to erosion of the colonic mucus layer of sugar-fed wild-type and Il10-/- mice.

Autoři článku: Hodgehewitt0151 (Bigum Mclaughlin)