Hinesblock4338

Z Iurium Wiki

Atrial fibrillation (AF) is the most commonly diagnosed arrhythmia and eludes an efficacious cure despite an increasing prevalence and a significant association with morbidity and mortality. In addition to an array of clinical sequelae, the origins and propagation of AF are multifactorial. In recent years, the contribution from the autonomic nervous system has been an area of particular interest. This review highlights the relevant physiology of autonomic and neurohormonal contributions to AF origin and maintenance, the current state of the literature on targeted therapies, and the path forward for clinical interventions.Moderate-intensity exercise improves cardiovascular outcomes. However, mounting clinical evidence demonstrates that long-term, high-intensity endurance training predisposes male and veteran athletes to an increased risk of atrial fibrillation (AF), a risk that is not observed across both genders. Although increased mortality associated with AF in the general population is not shared by athletes, clinically significant morbidities exist (eg, reduced exercise capacity, athletic performance, and quality of life). Additional research is needed to fill current gaps in knowledge pertaining to the natural history, pathophysiologic mechanisms, and management strategies of AF in the athlete.Modifiable risk factor management is becoming one of the 3 treatment pillars in atrial fibrillation management along with anticoagulation as well as conventional rate and rhythm control strategies. Preventive therapies, such as reducing blood pressure and treating obstructive sleep apnea, are paramount in the strategy of preventing atrial fibrillation. Identification of new modifiable risk factors and triggers also could help in the global strategy to reduce atrial fibrillation. This article covers alcohol intake, tobacco smoking, caffeine, chocolate, cannabis use, and air pollution as social risk factors related to lifestyle habits that potentially could contribute to atrial fibrillation development.Atrial fibrillation (AF), the common sustained arrhythmia in clinical practice, has major public health implications due to its associated morbidity and increased mortality. The AF epidemic is due to the burgeoning elderly population and the identification of novel risk factors, for example, genetics. Since the diagnosis of AF has a major impact on the clinical assessment and management of patients with inherited arrhythmia syndromes, improved understanding of the cause and pathogenesis of AF has provided important insights into the underlying pathophysiological mechanisms of this common arrhythmia and identified potential mechanism-based therapies.Atrial fibrillation is associated with aging, obesity, heart disease, diabetes, and/or hypertension. Recent evidence suggests that parenchymal and vascular lung diseases increase atrial fibrillation risk. We review the epidemiology, clinical features, pathophysiologic mechanisms, and treatment implications of atrial fibrillation associated with diseases of the lungs and their vasculature, especially pulmonary hypertension. We also consider other features of pulmonary disease-associated atrial fibrillation. A key mediator of these conditions is right heart disease and right atrial remodeling. We pay particular attention to the pathophysiology and treatment challenges in atrial fibrillation associated with right heart disease induced by pulmonary diseases, including pulmonary hypertension.Atrial fibrillation (AF) is the most common complication of cardiac surgery (CS). There are numerous risk factors, proposed mechanisms, and financial/clinical implications of post-CS AF (PCSAF). Management involves 2 arms prevention and treatment. This review highlights and summarizes previous literature on PCSAF and challenges the standard dogma regarding anticoagulation, particularly in the short term.Advances in atrial fibrillation (AF) management, perioperative medicine, and surgical techniques have reignited an interest in postoperative AF (POAF). POAF results from the interaction among subclinical atrial substrate, surgery-induced substrate, and transient postoperative factors. Prophylaxis for POAF after cardiac surgery is well established but the indications for preoperative treatment in noncardiac surgery need further investigation. A rate-control strategy is adequate for most asymptomatic patients with POAF and anticoagulation should be initiated for POAF more than 48 to 72 hours postsurgery. Research is needed to improve evidence-based management of POAF and guide long-term management in view of the substantial late recurrence-rate.Rheumatic heart disease results in significant remodeling of the atria that provides the milieu for maintaining atrial fibrillation. Some electrical remodeling is reversible and hence early intervention may prove useful. Active screening for atrial fibrillation in high-risk subset and instituting anticoagulation may reduce the devastating complications that follow. Age older than 50 years, NYHA functional class II symptoms, left atrial dimension >4.0 cm on echocardiogram in parasternal long-axis view, and gradients across the mitral valve >10 mm Hg are clinical indicators that identify the high-risk subset. Ablation strategy in this population may differ compared with the nonvalvular group.Atrial fibrillation is the most common arrhythmia globally. The global prevalence of atrial fibrillation is positively correlated with the sociodemographic index of different regions. Advancing age, male sex, and Caucasian race are risk factors; female sex is correlated with higher atrial fibrillation mortality worldwide likely owing to thromboembolic risk. African American ethnicity is associated with lower atrial fibrillation risk, same as Asian and Hispanic/Latino ethnicities compared with Caucasians. Atrial fibrillation may be heritable, and more than 100 genetic loci have been identified. A polygenic risk score and clinical risk factors are feasible and effective in risk stratification of incident disease.Novel cobalt-based metal-organic frameworks (Co MOFs) were synthesized by a facile "controlled synthesis" strategy. The MOFs displayed superior catalytic performance on the chemiluminescent (CL) reaction between N-(4-aminobutyl)-N-ethylisoluminol (ABEI) and H2O2. UV-vis absorption, CL spectrum, ESR, and radical scavenger experiments were conducted for clarifying the catalytic mechanism of Co MOFs. All results revealed that Co MOFs can accelerate decomposition of H2O2 and production of OH•, O2•-as well as 1O2 radicals. The rapid reaction between these reactive oxygen species and ABEI resulted in the generation of ABEI-ox∗. The excited-state oxidation product emitted a very intensive CL signal with a maximal emission wavelength of 430 nm as it returned to the ground state. To explore their application potential in CL assay, Co MOFs were used as powerful CL reaction catalyst for establishing a very sensitive method for immunoassay of aflatoxin B1. The detection range was 0.05-60 ng mL-1, and the limit of detection was 4.3 pg mL-1. The result for detecting herbal medicine samples demonstrates the acceptable reliability of the Co MOFs-based CL immunoassay. The proof-of-principle work verifies the application potential of Co MOFs on boosting intensive CL signal, and meets the demand for high sensitivity in various bioassay fields.Flap endonuclease 1 (FEN1), a ubiquitous enzyme involved in DNA repair and replication, is overexpressed in highly proliferative cancer cells. FEN1 has been recognized as a promising diagnostic marker of cancers; however, very few analytical techniques have been developed for the convenient detection of FEN1. To realize the simplified quantification of FEN1, we developed a FEN1-responsive fluorescent nanoprobe based on DNA-silver nanoclusters (DNA-AgNCs). The nanoprobe was rationally designed with a double-flapped dumbbell conformation, where its 5' flap was produced with DNA-AgNCs, and the 3' flap was elongated by a guanine-rich enhancer sequence (GRS). Rigidified by the DNA scaffold, DNA-AgNCs and the GRS are in close proximity, resulting in high fluorescence because of the GRS-induced activation of DNA-AgNCs. learn more Upon the addition of FEN1, the 5' flap of the nanoprobe is cleaved due to the structure-specific endonuclease activity of FEN1. This cleavage released the DNA-AgNCs from the nanoprobe, broke the proximity between DNA-AgNCs and the GRS, and caused decreased fluorescence. This nanoprobe can be applied in the sensitive detection of FEN1 with a detection limit of 40 fM, and it showed high specificity for the monitoring of FEN1 in clinical samples. As the first attempt to develop biosensors targeting FEN1 based on DNA-AgNCs, this work provided a potent platform for monitoring FEN1 and screening FEN1 inhibitors.Rolling circle amplification (RCA) is an efficient enzymatic isothermal reaction that using circular probe as a template to generate long tandem single-stranded DNA or RNA products under the initiation of short DNA or RNA primers. As a simplified derivative of natural rolling circle replication which synthesizes copies of circular nucleic acids molecules such as plasmids, RCA amplifies the circular template rapidly without thermal cycling and finds various applications in molecular biology. Compared with other amplification strategies, RCA has many obvious advantages. Firstly, because of the strict complementarity required in ligation of a padlock probe, it endows the RCA reaction with high specificity and can even be utilized to distinguish single base mismatches. Secondly, through the introduction of multiple primers, exponential amplification can be achieved easily and leads to a good sensitivity. Thirdly, RCA products can be customized by manipulating circular templates to generate functional nucleic acids such as aptamer, DNAzymes and restriction enzyme sites. Moreover, the RCA has good biocompatibility and is especially suitable for in situ detection. Therefore, RCA has attracted considerable attention as an efficient and potential tool for highly sensitive detection of biomarkers. Herein, we comprehensively introduce the fundamental principles of RCA technology, summarize it from three aspects including initiation mode, amplification mode and signal output mode, and discuss the recent application of RCA-based biosensor in this review.As an important protease, trypsin (TRY) has been identified as a key indicator of various diseases. A simple and sensitive strategy for TRY detection by using an environment-friendly biosafe probe is significant. Herein, we introduced negatively charged fluorescent polydopamine nanoparticles (PDNPs) with 4.8 nm diameter obtained through a controllable method as an effective probe for TRY. PDNPs exhibited excellent fluorescence property but integrated with protamine (Pro) to form an aggregation-caused quenching system via a static quenching mechanism. The quenching mechanism of Pro to PDNPs revealed the significant effect of the surface charge, functional groups, and appropriate size of PDNPs on quenching process. Given the specific hydrolysis of Pro by TRY, PDNPs were released from the quenching integration of PDNPs and Pro (PDNPs-Pro) and recovered their fluorescence. Thus, a fluorescence sensor for TRY with a linear range of 0.01 and 0.1 μg/mL and a detection limit of 6.7 ng/mL was developed without the disturbing from other proteases.

Autoři článku: Hinesblock4338 (Mccoy Andersen)