Higginsbendtsen5200

Z Iurium Wiki

The photocatalytic approach is known to be one of the most promising advanced oxidation processes for the tertiary treatment of polluted water. In this paper, β-NaYF4/TiO2 composite films have been synthetized through a novel sol-gel/spin-coating approach using a mixture of β-diketonate complexes of Na and Y, and Yb3+, Tm3+, Gd3+, Eu3+ as doping ions, together with the TiO2 P25 nanoparticles. The herein pioneering approach represents an easy, straightforward and industrially appealing method for the fabrication of doped β-NaYF4/TiO2 composites. The effect of the doped β-NaYF4 phase on the photocatalytic activity of TiO2 for the degradation of methylene blue (MB) has been deeply investigated. In particular, the upconverting TiO2/β-NaYF4 20%Yb, 2% Gd, x% Tm (x = 0.5 and 1%) and the downshifting TiO2/β-NaYF4 10% Eu composite films have been tested on MB degradation both under UV and visible light irradiation. An improvement up to 42.4% in the degradation of MB has been observed for the TiO2/β-NaYF4 10% Eu system after 240 min of UV irradiation.Deep inspiration breath-hold (DIBH) is widely used to reduce the cardiac dose in left-sided breast cancer radiotherapy. This study aimed to develop a deep learning chest X-ray model for cardiac dose prediction to select patients with a potentially high risk of cardiac irradiation and need for DIBH radiotherapy. We used 103 pairs of anteroposterior and lateral chest X-ray data of left-sided breast cancer patients (training cohort n = 59, validation cohort n = 19, test cohort n = 25). All patients underwent breast-conserving surgery followed by DIBH radiotherapy the treatment plan consisted of three-dimensional, two opposing tangential radiation fields. The prescription dose of the planning target volume was 42.56 Gy in 16 fractions. A convolutional neural network-based regression model was developed to predict the mean heart dose (∆MHD) reduction between free-breathing (MHDFB) and DIBH. The model performance is evaluated as a binary classifier by setting the cutoff value of ∆MHD > 1 Gy. The patient characteristics were as follows the median (IQR) age was 52 (47-61) years, MHDFB was 1.75 (1.14-2.47) Gy, and ∆MHD was 1.00 (0.52-1.64) Gy. The classification performance of the developed model showed a sensitivity of 85.7%, specificity of 90.9%, a positive predictive value of 92.3%, a negative predictive value of 83.3%, and a diagnostic accuracy of 88.0%. The AUC value of the ROC curve was 0.864. The proposed model could predict ∆MHD in breast radiotherapy, suggesting the potential of a classifier in which patients are more desirable for DIBH.Atmospheric rivers (ARs) generate most of the economic losses associated with flooding in the western United States and are projected to increase in intensity with climate change. This is of concern as flood damages have been shown to increase exponentially with AR intensity. To assess how AR-related flood damages are likely to respond to climate change, we constructed county-level damage models for the western 11 conterminous states using 40 years of flood insurance data linked to characteristics of ARs at landfall. Damage functions were applied to 14 CMIP5 global climate models under the RCP4.5 "intermediate emissions" and RCP8.5 "high emissions" scenarios, under the assumption that spatial patterns of exposure, vulnerability, and flood protection remain constant at present day levels. The models predict that annual expected AR-related flood damages in the western United States could increase from $1 billion in the historical period to $2.3 billion in the 2090s under the RCP4.5 scenario or to $3.2 billion under the RCP8.5 scenario. County-level projections were developed to identify counties at greatest risk, allowing policymakers to target efforts to increase resilience to climate change.The Toll-like receptor (TLR) and chemotaxis pathways are key components of the innate immune system. Subtle variation in the concentration, timing, and molecular structure of the ligands are known to affect downstream signaling and the resulting immune response. Computational modeling and simulation at the molecular interaction level can be used to study complex biological pathways, but such simulations require protein concentration values as model parameters. Here we report the development and application of targeted mass spectrometry assays to measure the absolute abundance of proteins of the mouse macrophage Toll-like receptor 4 (TLR4) and chemotaxis pathways. Two peptides per protein were quantified, if possible. The protein abundance values ranged from 1,332 to 227,000,000 copies per cell. They moderately correlated with transcript abundance values from a previously published mouse macrophage RNA-seq dataset, and these two datasets were combined to make proteome-wide abundance estimates. The datasets produced during this investigation can be used for pathway modeling and simulation, as well as for other studies of the TLR and chemotaxis pathways.Understanding the neural mechanisms underlying sleep state transitions is a fundamental goal of neurobiology and important for the development of new treatments for insomnia and other sleep disorders. Yet, brain circuits controlling this process remain poorly understood. Here we identify a population of sleep-active glutamatergic neurons in the ventrolateral medulla (VLM) that project to the preoptic area (POA), a prominent sleep-promoting region, in mice. Microendoscopic calcium imaging demonstrate that these VLM glutamatergic neurons display increased activity during the transitions from wakefulness to Non-Rapid Eye Movement (NREM) sleep. Chemogenetic silencing of POA-projecting VLM neurons suppresses NREM sleep, whereas chemogenetic activation of these neurons promotes NREM sleep. Moreover, we show that optogenetic activation of VLM glutamatergic neurons or their projections in the POA initiates NREM sleep in awake mice. Together, our findings uncover an excitatory brainstem-hypothalamic circuit that controls the wake-sleep transitions.The Sumatran orang-utan (Pongo abelii) reference genome was first published in 2011, in conjunction with ten re-sequenced genomes from unrelated wild-caught individuals. Together, these published data have been utilized in almost all great ape genomic studies, plus in much broader comparative genomic research. Here, we report that the original sequencing Consortium inadvertently switched nine of the ten samples and/or resulting re-sequenced genomes, erroneously attributing eight of these to the wrong source individuals. Among them is a genome from the recently identified Tapanuli (P. selleck tapanuliensis) species thus, this genome was sequenced and published a full six years prior to the species' description. Sex was wrongly assigned to five known individuals; the numbers in one sample identifier were swapped; and the identifier for another sample most closely resembles that of a sample from another individual entirely. These errors have been reproduced in countless subsequent manuscripts, with noted implications for studies reliant on data from known individuals.[3+2] Cycloaddition is a step- and atom-economic method for the synthesis of five-membered rings. Despite the great success of 1,3-dipolar cycloadditions, the radical [3+2] annulation of alkynes remains a formidable challenge. Herein, a photoinduced decatungstate-catalyzed [3+2] cycloaddition of various internal alkynes using abundant aliphatic aldehydes as a three-carbon synthon is developed, producing elaborate cyclopentanones in 100% atom economy with excellent site-, regio-, and diastereoselectivity under mild conditions. The catalytic cycle consists of hydrogen atom abstraction from aldehydes, radical addition, 1,5-hydrogen atom transfer, anti-Baldwin 5-endo-trig cyclization, and back hydrogen abstraction. The power of this method is showcased by the late-stage elaboration of medicinally relevant molecules and total or formal synthesis of (±)-β-cuparenone, (±)-laurokamurene B, and (±)-cuparene.Replacing coal with natural gas has contributed to recent emissions reductions in the electric sector, but there are questions about the near- and long-term roles for gas under deep decarbonization. In this study, we assess the potential role for natural gas and carbon removal in deeply decarbonized electricity systems in the U.S. and evaluate the robustness of these insights to key technology and policy assumptions. We find that natural-gas-fired generation can lower the cost of electric sector decarbonization, a result that is robust to a range of sensitivities, when carbon removal is allowed under policy. Accelerating decarbonization to reach net-zero in 2035 entails greater contributions from natural gas than in 2050. Nonetheless, wind and solar have higher generation shares than natural gas for most regions and scenarios (52-66% variable renewables for net-zero scenarios versus 0-19% for gas), suggesting that natural gas generation can be substituted more easily than its capacity.Molecular conformations induced by the rotation about single bonds play a crucial role in chemical transformations. Revealing the relationship between the conformations of chiral catalysts and the enantiodiscrimination is a formidable challenge due to the great difficulty in isolating the conformers. Herein, we report a chiral catalytic system composed of an achiral catalytically active unit and an axially chiral 1,1'-bi-2-naphthol (BINOL) unit which are connected via a C-O single bond. The two conformers of the catalyst induced by the rotation about the C-O bond, are determined via single-crystal X-ray diffraction and found to respectively lead to the formation of highly important axially chiral 1,1'-binaphthyl-2,2'-diamine (BINAM) and 2-amino-2'-hydroxy-1,1'-binaphthyl (NOBIN) derivatives in high yields (up to 98%), with excellent enantioselectivities (up to 982 e.r.) and opposite absolute configurations. The results highlight the importance of conformational dynamics of chiral catalysts in asymmetric catalysis.The bioactive lysophospholipid sphingosine-1-phosphate (S1P) acts via five different subtypes of S1P receptors (S1PRs) - S1P1-5. S1P5 is predominantly expressed in nervous and immune systems, regulating the egress of natural killer cells from lymph nodes and playing a role in immune and neurodegenerative disorders, as well as carcinogenesis. Several S1PR therapeutic drugs have been developed to treat these diseases; however, they lack receptor subtype selectivity, which leads to side effects. In this article, we describe a 2.2 Å resolution room temperature crystal structure of the human S1P5 receptor in complex with a selective inverse agonist determined by serial femtosecond crystallography (SFX) at the Pohang Accelerator Laboratory X-Ray Free Electron Laser (PAL-XFEL) and analyze its structure-activity relationship data. The structure demonstrates a unique ligand-binding mode, involving an allosteric sub-pocket, which clarifies the receptor subtype selectivity and provides a template for structure-based drug design. Together with previously published S1PR structures in complex with antagonists and agonists, our structure with S1P5-inverse agonist sheds light on the activation mechanism and reveals structural determinants of the inverse agonism in the S1PR family.

Autoři článku: Higginsbendtsen5200 (Poe Kruse)