Hestersimonsen5890
Wound healing is characterized by cell and extracellular matrix changes mediating cell migration, fibrosis, remodeling and regeneration. We previously demonstrated that chick fetal wound healing shows a regenerative phenotype regarding the cellular and molecular organization of the cornea. However, the chick corneal stromal structure is remarkably complex in the collagen fiber/lamellar organization, involving branching and anastomosing of collagen bundles. It is unknown whether the chick fetal wound healing is capable of recapitulating this developmentally regulated organization pattern. The purpose of this study was to examine the three-dimensional collagen architecture of wounded embryonic corneas, whilst identifying temporal and spatial changes in collagen organization during wound healing. Linear corneal wounds that traversed the epithelial layer, Bowman´s layer, and anterior stroma were generated in chick corneas on embryonic day 7. Irregular thin collagen fibers are present in the wounded cornea during the early phases of wound healing. As wound healing progresses, the collagen organization dramatically changes, acquiring an orthogonal arrangement. Fourier transform analysis affirmed this observation and revealed that adjacent collagen lamellae display an angular displacement progressing from the epithelium layer towards the endothelium. These data indicate that the collagen organization of the wounded embryonic cornea recapitulate the native macrostructure.The present work assessed the effects of dietary ratios of essential fatty acids, arachidonic (ARA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), on liver and intestine oxidative status, intestinal histomorphology and gut microbiota of gilthead sea bream. Four isoproteic and isolipidic plant-based diets were formulated containing a vegetable oil blend as the main lipid source. Diets were supplemented with ARA/EPA/DHA levels (%DM) equivalent to 2%0.2%0.1% (Diet A); 1.0%0.4%0.4% (Diet B); 0%0.6%0.6% (Diet C); 0%0.3%1.5% (Diet D) and tested in triplicate groups for 56 days. Proteases inhibitor Lipid peroxidation was higher in fish fed diets C and D while no differences were reported between diets regarding total, oxidized, and reduced glutathione, and oxidative stress index. Glutathione reductase was higher in fish fed diet A than diets C and D. No histological alterations were observed in the distal intestine. Lower microbiota diversity was observed in intestinal mucosa of fish fed diet C than A, while diets C and D enabled the proliferation of health-promoting bacteria from Bacteroidetes phylum (Asinibacterium sp.) and the absence of pathogenic species like Edwardsiella tarda. Overall, results suggest that a balance between dietary ARA/EPA + DHA promotes gilthead sea bream juveniles' health however higher dietary content of n-3 LC-PUFA might limited the presence of microbial pathogens in intestinal mucosa.In the present work, nanocomposites based on the partially silane-terminated polyurethanes reinforced with sulfuric acid-treated halloysite nanotubes were synthesized and evaluated as a potential candidate for transparent blast resistant configurations. The polyurethane must present high tensile ductility at high strain rates to be able to contain fragments and increase the survivability of the system. Gas-gun spall experiments were conducted to measure the dynamic tensile strength (spall strength) and fracture toughness of the nanocomposite and neat polyurethane. The nanocomposite presented a 35% higher spall strength and 21% higher fracture toughness compared to the neat polyurethane while maintaining transparency. The recovered samples following the spall tests were analysed via scanning electron microscope fractographies. The nanocomposite and neat polyurethane samples were chemically characterized via Fourier transform infrared spectroscopy and melting behaviour via differential scanning calorimetry. The improved properties can be attributed, in large part, to the presence of more rigid spherulitic structures, and a rougher fracture surface constituting of several micro-cracks within the nanocomposite.Hybridisation in the wild between closely related species is a common mechanism of speciation in the plant kingdom and, in particular, in the grass family. Here we explore the potential for natural hybridisation in Stipa (one of the largest genera in Poaceae) between genetically distant species at their distribution edges in Mountains of Central Asia using integrative taxonomy. Our research highlights the applicability of classical morphological and genome reduction approaches in studies on wild plant species. The obtained results revealed a new nothospecies, Stipa × lazkovii, which exhibits intermediate characters to S. krylovii and S. bungeana. A high-density DArTseq assay disclosed that S. × lazkovii is an F1 hybrid, and established that the plastid and mitochondrial DNA was inherited from S. bungeana. In addition, molecular markers detected a hybridisation event between morphologically and genetically distant species S. bungeana and probably S. glareosa. Moreover, our findings demonstrated an uncertainty on the taxonomic status of S. bungeana that currently belongs to the section Leiostipa, but it is genetically closer to S. breviflora from the section Barbatae. Finally, we noticed a discrepancy between the current molecular data with the previous findings on S. capillata and S. sareptana.This work is part of a study of different types of plant-based biomass to elucidate their capacity for valorisation via a managed carbonation step involving gaseous carbon dioxide (CO2). The perspectives for broader biomass waste valorisation was reviewed, followed by a proposed closed-loop process for the valorisation of wood in earlier works. The present work newly focusses on combining agricultural biomass with mineralised CO2. Here, the reactivity of selected agricultural biomass ashes with CO2 and their ability to be bound by mineralised carbonate in a hardened product is examined. Three categories of agricultural biomass residues, including shell, fibre and soft peel, were incinerated at 900 ± 25 °C. The biomass ashes were moistened (10% w/w) and moulded into cylindrical samples and exposed to 100% CO2 gas at 50% RH for 24 h, during which they cemented into hardened monolithic products. The calcia in ashes formed a negative relationship with ash yield and the microstructure of the carbonate-cementing phase was distinct and related to the particular biomass feedstock.