Hesterbuck9647
Further testing in H9C2 cardiomyocytes revealed that cholesterol-induced atrophy and death of cardiomyocytes was due to mitochondrial dysfunction and conditions favoring DCM (i.e. reduced mRNA expression of ANF, BNP, DSP, and atrogin-1), and that AACOCF3 counteracted the cholesterol-induced DCM phenotype.
Cholesterol-induced MUNO-DCM phenotype was counteracted by cPLA2 inhibitor, which is potentially useful for the treatment of LysoPCs-associated DCM in MUNO.
Cholesterol-induced MUNO-DCM phenotype was counteracted by cPLA2 inhibitor, which is potentially useful for the treatment of LysoPCs-associated DCM in MUNO.Methylglyoxal was shown to impair adipose tissue capillarization and insulin sensitivity in obese models. We hypothesized that glyoxalase-1 (GLO-1) activity could be diminished in the adipose tissue of type 2 diabetic obese patients. Moreover, we assessed whether such activity could be increased by GLP-1-based therapies in order to improve adipose tissue capillarization and insulin sensitivity. GLO-1 activity was assessed in visceral adipose tissue of a cohort of obese patients. The role of GLP-1 in modulating GLO-1 was assessed in type 2 diabetic GK rats submitted to sleeve gastrectomy or Liraglutide treatment, in the adipose tissue angiogenesis assay and in the HUVEC cell line. Glyoxalase-1 activity was decreased in visceral adipose tissue of pre-diabetic and diabetic obese patients, together with other markers of adipose tissue dysfunction and correlated with increased HbA1c levels. Decreased adipose tissue GLO-1 levels in GK rats were increased by sleeve gastrectomy and Liraglutide, being associated with overexpression of angiogenic and vasoactive factors, as well as insulin receptor phosphorylation (Tyr1161). Moreover, GLP-1 increased adipose tissue capillarization and HUVEC proliferation in a glyoxalase-dependent manner. Lower adipose tissue GLO-1 activity was observed in dysmetabolic patients, being a target for GLP-1 in improving adipose tissue capillarization and insulin sensitivity.Parkin is a crucial protein that promotes the clearance of damaged mitochondria via mitophagy in neuron, and parkin mutations result in autosomal-recessive Parkinson's disease (AR-PD). However, the exact mechanisms underlying the regulation of Parkin-mediated mitophagy in PD remain unclear. In this study, PD models were generated through incubation of SH-SY5Y cells with 1-methyl-4-phenylpyridinium ion (MPP+, 1.5 mM for 24 h) and intraperitoneal injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg for five consecutive days) in mice. A Bioinformatics database was used to identify Parkin-targeting microRNAs (miRNAs). Then, miR-103a-3p agomir, miR-103a-3p antagomir and Parkin siRNA were used to assess the effects of miR-103a-3p/Parkin/Ambra1 signaling-mediated mitophagy in PD in vitro and in vivo. The protein and mRNA levels of Parkin and Ambra1 were significantly decreased, while miR-103a-3p, which is a highly expressed miRNA in the human brain, was obviously increased in PD mouse and SH-SY5Y cell models. Moreover, miR-103a-3p suppressed Parkin expression by targeting a conserved binding site in the 3'-untranslated region (UTR) of Parkin mRNA. Importantly, miR-103a-3p inhibition resulted in neuroprotective effects and improved mitophagy in vitro and in vivo, whereas Parkin siRNA strongly abolished these effects. These findings suggested that miR-103a-3p inhibition has neuroprotective effects in PD, which may be involved in regulating mitophagy through the Parkin/Ambra1 pathway. Modulating miR-103a-3p levels may be an applicable therapeutic strategy for PD.De novo variants in KCNQ2 encoding for Kv7.2 voltage-dependent neuronal potassium (K+) channel subunits are associated with developmental epileptic encephalopathy (DEE). We herein describe the clinical and electroencephalographic (EEG) features of a child with early-onset DEE caused by the novel KCNQ2 p.G310S variant. In vitro experiments demonstrated that the mutation induces loss-of-function effects on the currents produced by channels incorporating mutant subunits; these effects were counteracted by the selective Kv7 opener retigabine and by gabapentin, a recently described Kv7 activator. Given these data, the patient started treatment with gabapentin, showing a rapid and sustained clinical and EEG improvement over the following months. Overall, these results suggest that gabapentin can be regarded as a precision therapy for DEEs due to KCNQ2 loss-of-function mutations.To date, cancer is the second leading cause of death worldwide after cardiac arrest. A large number of synthetic drugs are available for the treatment of different types of cancer; however, a major problem associated with these drugs is its toxicity towards the normal cells. To overcome these problems, researchers explore plants derived phytochemicals because of their pleiotropic action and least toxicity towards the normal cells. Tangeretin is a polymethoxylated flavone found extensively in citrus fruits and has shown potent anti-cancer activity in different types of cancer cells. Hence, this review examines the anti-cancer activity of tangeretin via different molecular targets/pathways. Tangeretin induces apoptosis via intrinsic as well as extrinsic pathways and arrest the cell cycle. It also suppresses cell proliferation by modulating PI3K/AKT/mTOR, Notch, and MAPK signalling pathways. Besides, it induces autophagic cell death, suppresses migration, invasion, and angiogenesis. Further, the role of tangeretin in multi-drug resistance and combination therapy, different biological sources of tangeretin, its derivatives, and pharmacokinetics profile and toxicity studies are also discussed. Towards the end, the challenges associated with tangeretin usage as potential anti-cancer phytochemicals have also been discussed. Tangeretin, like a pandora's box, needs to be explored further, and more research is warranted to improve its usefulness for better human health.Nanoscale metal coordination polymers (NCPs), built from metal ions and organic ligands, have attracted tremendous interest in biomedical applications. This is mainly due to their mesoporous structure, tunable size and morphology and versatile functionality. NCPs can be further divided into nanoscale metal-organic frameworks (NMOFs) and amorphous coordination polymer particles (ACPPs) depending on their structural crystallinity. NMOFs as nanocarriers have been extensively reviewed. However, the highlights of ACPPs as theranostic nanoplatforms are still limited. In this review, the recent progress of ACPPs as theranostic nanoplatforms is summarized based on what types of organic linkers used. The ACPPs are divided into three main parts photosensitizers-based ACPPs, chemical drugs-based ACPPs, and biomolecules-based ACPPs. Finally, the prospects and challenges of the ACPPs for enhanced biomedical applications are also discussed. https://www.selleckchem.com/products/Gefitinib.html STATEMENT OF SIGNIFICANCE Over the last decades, amorphous metal coordination polymers (ACPPs), constructed by metal ions and organic linkers, have attracted enormous interest in cancer treatment owing to their high drug loading capability, facile synthetic procedures, low long-term toxicity, and mild preparation conditions.